
ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

DEVELOPMENT OF A COMPREHENSIVE
SIMULATION SOFTWARE FOR SPACECRAFT MISSIONS

M.Sc. THESIS

Emirhan Eser Gül

Institue of Science and Technology

Defense Technologies

JANUARY 2023





ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

DEVELOPMENT OF A COMPREHENSIVE
SIMULATION SOFTWARE FOR SPACECRAFT MISSIONS

M.Sc. THESIS

Emirhan Eser Gül
(514191007)

Institue of Science and Technology

Defense Technologies

Thesis Advisor: Prof. Dr. Alim Rüstem ASLAN

JANUARY 2023
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Ω : Right ascension of the ascending node
ω : Argument of perigee
θ : True anomaly
h : Altitude
E : Eccentric Anomaly
M : Mean Anomaly
λ : Longitude
φ : Latitude
f : Flattening of Earth
β : Flight path angle
RE : Radius of Earth
rp : Radius of periapsis
ra : Radius of apoapsis
G : Universal Gravitational Constant
µ : Gravitational parameter
J2, J3 : Second and third gravitational zonal harmonics of the Earth
ρ : Density
Cd : Drag coefficient
Cr : Radiation pressure coefficient
c : Speed of light
wE : Earth rotation rate
t : Time
∆V : Velocity change
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DEVELOPMENT OF A COMPREHENSIVE
SIMULATION SOFTWARE FOR SPACECRAFT MISSIONS

SUMMARY

The growth of satellite mission, especially CubeSats, in terms of complexity and
capabilities has required the development of dedicated orbit simulation software for
mission planning and analysis. This thesis presents the development and uses of a
simulation software that will be used to aid in the design of spacecraft missions. The
process of developing the software architecture is described in stages from software
requirement analysis to test and verification of the final implementation.

During a space mission, a spacecraft may be placed in a variety of orbits for different
purposes. Preliminary mission design needs to consider all mission phases to meet
the needs of more complex missions. To effectively design an orbit, it is important to
clearly define the purpose of the orbit and regularly review and reassess this purpose as
mission requirements evolve or become more defined. It is also important to consider
alternative orbit designs, as there may be multiple options that are viable. For example,
a single large satellite in a geosynchronous orbit or a group of smaller satellites in
low-Earth orbit may both be effective for communication purposes. Multiple different
designs are often compared to find the orbit that best accommodate the mission
requirements.

There are various criteria that have to be considered according to the mission, such
as determining the communication links between satellites and ground stations, and
finding the time intervals when there is a pass or eclipse, which allow determining the
requirements of communication and power systems. For an Earth-observing satellite,
the orbit that has the most revisit time for desired locations and properties of the optical
system such as the field of view should be determined.

The aim of this work is to make use of the software tools to create a simulation software
that provides a framework for efficient analysis and planning of satellite missions that
include earth observation, communication, and scientific objectives in order to helps
the mission design process by giving the ability to make fast and reliable decisions
regarding the satellite system requirements.

The developed software implements multiple orbit propagators, with the most
prominent being the High-precision Orbit Propagator (HPOP) which takes into account
all of the forces that can be modelled so far. However, physics-based models alone are
insufficient for accurately predicting orbits and avoiding collisions, as demonstrated by
previous collisions caused by such predictions. Our knowledge of the physical world
is not sufficient enough to create perfect models as it is near impossible to predict some
perturbations precisely, such as solar activity which is only an approximation based on
statistical data, as well as the atmosphere models and the area of the satellite that drag
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force affects, which also change depending on the attitude model. In order to improve
the accuracy of these models, a machine-learning approach that utilizes the past flight
data is proposed. Models of orbit prediction errors can be learned directly from a
large amount of historical data, allowing for predictions without explicitly modeling
forces or perturbations. Hence, a neural-networks model was trained and its impact
was demonstrated.

The software is developed using various programming languages. The user interface
is programmed in JavaScript, using HTML and CSS. Orbital analyses and other
computation heavy tasks were performed in C++ as it has the benefits of modular
design, less resource use and fast execution speed, as well as good portability. Python
was used for model training and artificial intelligence methods due to the enormous
number of scientific libraries it includes. Electron framework was used to provide
cross-platform compatibility. For real-time data visualization in both 2D and 3D, the
Cesium framework was implemented using Bing as data provider for satellite imagery
and terrain modelling. The simulation results show that the software succeeds in
attaining high execution speed and precision.

The results indicate that the proposed solution can be useful in reducing time and effort
put into the mission design process as well as increase the rate of success for both
Earth and interplanetary missions. The developed software can be used for real-world
mission design and operations, as a tool for education and engineering studies, and
public engagement.

The structure of the thesis is as follows. First the mathematical background and
celestial relationships that are widely used in mission planning are explained along
with the algorithms used to implement them into the software. These include
coordinate system transformations, various orbital elements, and time systems. Then
orbital propagation is explained starting from two-body motion, which is the basis for
all equations of motion, followed by adding perturbations and other forces acting on the
satellite to facilitate the high-precision numerical propagator. Analytical propagators
that are widely used are explained as well. Then, the design and implementation
of a neural-networks model that is trained to improve the accuracy of the numerical
propagators is described. The next chapter focuses on the simulation environment
and the capabilities of the software. It is possible to easily create mission-specific
orbits such as SSO, GEO, and Molniya, predict the visibility of satellites from different
locations on the ground, determine the eclipse intervals, compute communication link
budget, analyze on-orbit power generation, and perform basic maneuvers within the
simulation environment. The software principles, architecture, development process,
and user interface design is thoroughly explained as well. Finally, verifications using
real data and satellite observations are performed and results are presented, which
show that the developed software is ready for real mission use, and possible future
developments are discussed.
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UZAY ARACI GÖREVLERİ İÇİN
KAPSAMLI BİR SİMÜLASYON YAZILIMI GELİŞTİRİLMESİ

ÖZET

Uydu görevlerinin, özellikle Küp Uyduların, karmaşıklık ve kapsam açısından
yüksek oranda artması, görev planlama ve analiz için özelleştirilmiş bir yörünge
simülasyon yazılımınının geliştirilmesi ihtiyacını ortaya çıkarmıştır. Bu tez, uzay
aracı görevlerinin tasarımına yardımcı olacak bir simülasyon yazılımın geliştirilmesi
ve kullanımını sunmaktadır. Yazılım mimarisinin geliştirilme süreci, yazılım
gereksinimleri analizinden, son uygulamanın test ve doğrulamasına kadar aşamalar
şeklinde açıklanmıştır.

Uzay görevleri sırasında, bir uzay aracı farklı amaçlar için çeşitli yörüngelere
yerleştirilebilir. Görev ön tasarımı, karmaşık görevlerin ihtiyaçlarını karşılamak
için tüm görev aşamalarını dikkate almayı gerektirir. Bir yörüngeyi etkili bir
şekilde tasarlamak için, yörünge amacını net bir şekilde tanımlamak ve görev
gereksinimlerinin evrilmesi ya da daha net bir hale gelmesiyle bu amacı sık sık
gözden geçirip yeniden değerlendirmek önemlidir. Ayrıca, bir görev için birden
çok geçerli seçenek olabilir, bu nedenle alternatif yörünge tasarımlarını da dikkate
almak gerekmektedir. Örneğin, iletişim amaçları için, yer eşzamanlı yörüngeye
yerleştirilen tek bir büyük uydu ile alçak Dünya yörüngesine yerleştirilen bir grup
daha küçük uydunun her ikisi de etkili olabilir. Çoğu zaman, farklı tasarımları
birbirleriyle karşılaştırmak ve görev gereksinimlerine en uygun yörüngeyi tespit etmek
gerekmektedir.

Bunların yanı sıra, göreve bağlı olarak, tasarım esnasında göz önünde bulundurulması
gereken türlü kriter bulunmaktadır. Görev için en uygun yörüngenin belirlenmesi,
uydunun yörünge üzerinde ne kadar güç üretimi gerçekleştirebileceğinin analizi,
kullanılacak iletişim sistemlerinin güç ve veri aktarma hızı gereksinimlerinin
belirlenmesi, atmosfer sürtünmesi ve güneş ışınım basıncı gibi olguların yörünge
ömrüne olan etkilerinin hesaplanması gibi faktörler tasarımı önemli ölçüde etkile-
mektedir. İnsanların bütün bu hesaplamaları yapması mümkün olsa da göz önünde
bulundurulması gereken çok fazla değişken olması ve tasarımdaki bir değişikliğin
diğer kararları etkilemesi sonucu birçok hesabın tekrar yapılması gerekmesi hem hata
yapmayı çok olası kılmakta hem de gereken iş gücünü çok arttırmaktadır. Genellikle
uydu tasarımı üzerine çalışılırken bu tarz analizlere yeterince zaman ayrılamamaktadır.

Bu çalışmanın amacı, yazılım araçlarını kullanarak Dünya gözlemi, iletişim ve
bilimsel hedefleri içeren uydu görevlerinin etkin bir şekilde analizi ve planlaması için
altyapı sağlayacak bir simülasyon yazılımı geliştirmektir. Bu sayede, uydu sistemleri
gereksinimleriyle ilgili hızlı ve güvenilir kararlar verilerek görev tasarım sürecinin
kolaylaştırılabilmesi hedeflenmektedir.
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Geliştirilen yazılım, şu ana kadar geliştirilmiş en hassas model olan Yüksek
Doğruluklu Yörünge İlerleticisi (HPOP) dahil, birden çok yörünge ilerletici
içermektedir. Ancak, son yıllarda meydana gelen çarpışmaları göz önünde
bulundurunca, fizik temelli modellerin yörüngeleri tek başlarına yeterince doğru
bir şekilde tahmin edemedikleri ve çarpışmaların önlenmesi için yeterli olmadıkları
görülmektedir. Fiziksel dünya hakkındaki bilgimiz mükemmel modeller oluşturmak
için yetersizdir, örneğin güneş aktivitesi gibi yalnızca istatistiksel verilere dayalı
bazı bozulmaların doğru bir şekilde tahmin edilmesi neredeyse imkansızdır, benzer
şekilde atmosfer modelleri ve sürükleme kuvvetinin etkilediği uydu alanı da yönelim
modellerine göre değişmektedir. Bu çalışma kapsamında, bu modellerin doğruluğunu
iyileştirmek için geçmiş uçuş verilerini kullanan bir makine öğrenimi yaklaşımı
önerilmektedir. Elimizde bulunan yüksek miktardaki tarihi uydu verisi kullanılarak,
tahmin edilen yörüngelerdeki hata modelleri öğrenilebilir ve böylece ön görülemeyen
bozuntu ve kuvvetlerin açıkça modellenmelerine ihtiyaç duyulmaksızın yörünge
tahminleri iyileştirilebilir. Bu doğrultuda bir yapay sinir ağı modeli eğitilmiş ve etkisi
gösterilmiştir.

Yazılım, çeşitli programlama dilleri kullanılarak geliştirilmiştir. Kullanıcı arayüzü
JavaScript, HTML ve CSS kullanılarak programlanmıştır. Yörünge analizleri ve
diğer yüksek işlem gücü gerektiren hesaplamalarda, modüler tasarım, daha az kaynak
kullanımı ve yüksek işlem hızı gibi avantajlardan dolayı C++ tercih edilmiştir. Yapay
zeka yöntemleri ve model eğitimi için içerdiği çok sayıdaki bilimsel kütüphane ve
destekten dolayı Python kullanılmıştır. Platformlar arası uyumluluk sağlamak için
Electron motoru, gerçek zamanlı 2B ve 3B veri görselleştirmesi için Cesium motoru,
uydu görüntüleri ve arazi modelleme işleri için veri sağlayıcı olarak Bing kullanıldı.
Simülasyon sonuçları, yazılımın yüksek işlem hızı ve doğruluğa sahip olduğunu ortaya
koymaktadır.

Sonuçların gösterdiğine göre, bu çalışmada ortaya çıkarılan çözüm görev tasarım
sürecine konulan zaman ve uğraşı azaltıp, başarı oranlarını arttırma potansiyeline
sahiptir. Geliştirilen yazılım gerçek görevlerin tasarımı ve yürütülmesi için
kullanılmanın yanı sıra mühendislik çalışmaları ve eğitim için bir araç olarak da
kullanılabilecektir.

Tezin yapısı şu şekildedir. Önce, görev planlamasında sıkça kullanılan matematiksel
bağıntılar ve göksel ilişkiler açıklanmış, bu bağıntıları yazılıma eklemekte kullanılan
algoritmalara yer verilmiştir. Bunlar koordinat sistemleri dönüşümleri, çeşitli yörünge
elemanları ve uzay alanında kullanılan zaman sistemleri dönüşümlerini içermektedir.
Daha sonra, hareket denklemlerinin temelini oluşturan iki-cisim denkleminden yola
çıkarak yazılımda yer alan çeşitli yörünge ilerleticiler anlatılmıştır. Bu denklemin
üzerine bozuntular ve diğer kuvvet modelleri eklenerek yüksek doğruluklu yörünge
ilerletici formüle edilmiş, yaygın olarak kullanılan analitik ve sayısal ilerleticiler
hakkında bilgiler verilmiştir. Sonrasında tez kapsamında geliştirilen ve yörünge
ilerleticilerin doğruluğunu arttırmak için kullanılması hedeflenen yapay sinir ağı
modelinin teorisi ve uygulanışı açıklanmıştır. Sonraki bölümde simülasyon ortamı
ve yazılımın kabiliyetleri anlatılmaktadır. SSO, GEO, Molniya gibi göreve odaklı
yörüngelerin hızlıca tanımlanması, uyduların Dünya üzerindeki çeşitli noktalardan
görüldüğü zaman aralıklarının tespit edilmesi, uydunun güneş ışığı almadığı
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zamanların belirlenmesi, iletişim link bütçesi hesaplanması, yörünge üzerindeki
güç üretimi ve basit yörünge manevralarının gerçekleştirilmesi gibi simülasyon
kapsamındaki özellikler hakkında bilgiler verilmiştir. Yazılım geliştirilirken takip
edilen ilkeler, yazılım mimarisinin tanımlanması, yazılım geliştirme süreci ve
kullanıcı arayüzü tasarımı detaylıca anlatılmıştır. Nihayetinde, gerçek veri ve
uydu dinlemeleri kullanılarak doğrulamalar gerçekleştirilmiş ve elde edilen sonuçlar
sunularak yazılımın gerçek görevler için kullanılmaya hazır olduğu gösterilmiş,
gelecekte yapılabilecek geliştirmeler tartışılmıştır.
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1. INTRODUCTION

This work is conducted in Istanbul Technical University – Space Systems Design and

Testing Laboratory (SSDTL), where a total of 7 CubeSats were developed by graduate

and undergraduate students and inserted into orbit.

Developing a satellite has a lot of cost associated with it, usually exceeding 100 million

dollars due to the various sophisticated and convoluted technologies they include.

There are various constraints on space missions including power, communication,

sunlight, weather, sensor resolution and payload constraints that has to be addressed

during the mission design [1]. Using proper mathematical models and software

technologies in order to manage and allocate the resources of the satellite and develop

optimized mission plans, we can utilize the resources effectively and avoid further

costs.

As satellite missions, particularly CubeSats, have become more sophisticated and

capable, specialized orbit simulation programs have been developed to assist with

mission planning and analysis. A simulation software that provides a framework for

efficient analysis and planning of satellite missions that include earth observation,

communication, and scientific objectives helps the mission design process by

giving the ability to make fast and reliable decisions regarding the satellite system

requirements.

1.1 Purpose of Thesis

In 2009, SSDTL was established in order to develop the first CubeSat of Turkey,

ITUpSat-1. The decade following its success, 5 more CubeSats were developed and

placed in orbit. The latest project, SharjahSat-1 3U CubeSat started development in

2019 and came to fruition as of 2022. During the development of these projects, the

necessity of a software to aid in the mission planning process was realized.
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The goal of this study is to research and design, given the objectives of the

satellite project at hand, a reliable and straightforward method to decide critical

system parameters of spacecraft based on various constraints while maintaining easy

integrability to facilitate further development for future space missions that are not

only limited to Earth-orbiting satellite systems.

The number of objects orbiting the Earth grow exponentially, and fast and

precise predictions are needed for modern space surveillance. Traditional Special

Perturbations orbit propagators provide accurate results, but are awfully slow as

performing numerical integration of the osculating equations of motion is a costly

process, usually in more than 100 steps per revolution of the spacecraft. On the

other hand, fully-analytical General Perturbations models yield fast results but the

equations they are based on use a good deal of approximations, hence they have a

large margin of error. Hence, a non-analytical, AI-powered orbital propagator was

developed using deep learning and reinforcement learning methods and its advantages

against the available methods were examined and discussed.

The requirements for the software were derived from the objectives of the SharjahSat-1

mission, which can be inspected in two categories.

1. iXRD Payload (Primary Payload): An X-Ray detector to:

• Extend knowledge on miniaturized X-Ray detectors and their capabilities to

contribute to Space Weather research.

• Detect hard X-rays from very bright galactic X-ray sources such as very bright

black hole and neutron stars.

• Observe and study the bright sun flares and development of solar coronal

holes, responsible for driving the stellar wind at an early phase.

2. Optical Payload (Secondary Payload): A camera system with a GSD of at least 50

meter/pixel to:

• Acquire the images of regions on Earth from low orbit.

• Take photos of SAASST and its surroundings.
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These objectives require the design of an orbit with high visit times of SAAST,

determination of camera field of view, determination of communication link budgets,

and propagation of orbit considering different attitude models such as point tracking.

Key tasks for the software are then:

• Accurately model the orbital propagation based on the physical parameters of the

orbit for the desired time interval. Atmospheric models, radiation pattern of the

sun, gravity models are all utilized in this process.

• Determine communication links between the satellite and a ground station and/or

another satellite.

• Determine the power generation on-orbit based on hardware parameters and eclipse

durations.

• Visualize the orbit in both 3D and 2D views.

1.2 Literature Review

Spacecraft simulation and mission analysis software are important tools for the design

and operation of spacecraft and their missions. These tools allow engineers and

mission planners to model and predict the behavior of spacecraft under a variety of

conditions, and to optimize the performance and efficiency of the spacecraft and its

mission.

There have been numerous developments in this field over the years. One key

development has been the increased use of advanced algorithms and mathematical

models to more accurately and efficiently simulate spacecraft behavior, as our

understanding of force models and accuracy of observed quantities increased. This has

been facilitated by the availability of powerful computing systems and the increasing

use of data from real-world spacecraft missions.

Another important development has been the integration of various tools and software

packages into comprehensive mission analysis platforms. These platforms allow users

to analyze all aspects of a spacecraft mission, from orbit determination and trajectory
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optimization to the effects of various force models and the performance of subsystems

such as propulsion and power systems.

In recent years, there has also been a trend towards the development of user-friendly,

intuitive software interfaces that make it easier for non-experts to use these tools.

This has made it possible for a wider range of individuals, including students and

researchers, to access and utilize these tools.

While almost all satellite operators develop their own software from scratch, there are

many open-source and commercial products available as well. The most prominent

open-source spacecraft simulation software at the moment are GMAT and Orekit.

GMAT (General Mission Analysis Tool) was developed at the Goddard Space Flight

Center by a team of NASA with contributions from the public and private intuitions.

It is widely used for preliminary mission design and real-world mission operations.

Mission analysis and trajectory optimization of a spacecraft can be achieved using this

tool. It can be used to design the path a spacecraft will follow, optimize the maneuvers

it will make along the way, and predict its future trajectory. GMAT can also be used

to determine the orbit of a spacecraft, visualize and communicate mission parameters,

and explore the range of possible mission options (also known as the "trade space") [2].

Another established flight software is Orekit by CS Group. Orekit is a software

library that offers a wide range of low-level tools and algorithms for use in space

flight dynamics. It includes basic concepts such as time, frames, orbital parameters,

orbit propagation, attitude, celestial bodies, force models, and JPL ephemerids, as well

as comprehensive support for each of these concepts. Orekit also provides several

high-level features, including attitude modes, frame handling, propagation and outfitter

tools, time scale tools, and Earth orientation parameters. These tools and features can

be used to analyze and simulate various aspects of spacecraft behavior and mission

planning [3].

Many other tools exist on the market at the moment as well, like AGI STK, FreeFlyer,

and Patrius. For the scope of this work, only open-source solutions were inspected.

4



1.3 Overview

The software is developed using various programming languages. JavaScript was used

for user interface alongside HTML and CSS. Orbital analyses and other computation

heavy tasks were performed in C++ as it has the benefits of modular design, less

resource use and fast execution speed, as well as good portability. Python was used

for model training and artificial intelligence methods due to the enormous number of

scientific libraries it includes. Electron framework was used to provide cross-platform

compatibility. For real-time data visualization in both 2D and 3D, the Cesium

framework was implemented using Bing as data provider for satellite imagery and

terrain modelling. The software demonstrates a high level of precision and performs

quickly according to the results.

Chapter 2 describes the celestial relationships and the mathematical foundation as well

as implementation of algorithms used in the software. The user has the choice to

obtain orbital elements in different coordinate systems and orbital elements, whose

relationships and conversion procedures were detailed. Different time systems that are

widely used in space missions are also described.

Chapter 3 explains the orbital propagators, starting from the fundamental two-body

motion equation and building upon it to finally achieve the High-Precision Orbit

Propagator which considers all force models modelled so far. Both the analytical

and numerical propagators are examined, and the integrators used behind the latter

are briefly discussed. Then, in Chapter 4, the theory and development of the

neural-networks based model which uses historical orbit data to improve the accuracy

of numerical propagators is explained along with its results.

Chapter 5 gives detailed information about the capabilities of the constructed

simulation environment. It involves creation of specific orbit types which are

pre-defined in the software, such as sun-synchronous and geosynchronous orbits that

are widely used in real missions. The process of determining ground station passes

and eclipse events, computation of communication link budgets, power generation

analysis, and calculation of orbital maneuvers are also explained in this chapter.
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In Chapter 6, the software development process is outlined. The development

principles and how they are followed, design of software architecture, user interface

development, and general process are explained.

Finally, in Chapter 7, outputs are verified by using real data, by comparison with

other software, and by performing satellite observations in ITU Ground Station. The

flight-readiness of the software is demonstrated and the results as well as planned

future improvements are discussed.
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2. CELESTIAL RELATIONSHIPS

2.1 Coordinate Systems

The orientation of the orbital elements in relation to a central body is defined using

a coordinate system. The software is able to convert a state vector from one

coordinate system to another by applying the appropriate translation and rotation

operations. In this section, the relations governing the implemented coordinate system

transformations are defined. For simplicity, only equations for converting to ICRF or

J2000 systems are given, from which all other systems can be obtained.

2.1.1 ICRF

The International Astronomical Union (IAU) adopted the International Celestial

Reference System (ICRS) as the standard reference system starting 1998. The

associated reference frame, called the International Celestial Reference Frame (ICRF)

is realized using an algorithm consisting of multiple models as shown in Figure 2.1.

(a) Precession & Nutation Effects [4] (b) Polar motion effect [5]
Figure 2.1 : Effects of perturbating forces on Earth’s motion
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The most recent algorithm uses the the IAU2006 nutation and P03 precession models,

and the Earth rotation angle and became operational in the beginning of 2009. The

origin of this frame is located at the barycenter of the solar system (BCRF) within a

relativistic framework, and its axes are realized by observations of extragalactic radio

objects from VLBI measurements, in order to ensure the frame has no net rotation.

ICRF is the most accurate representation of an inertial reference frame that has been

created so far. It is an improvement on the J2000 frame, and most recent star catalogs

and ephemerides for celestial bodies are typically expressed using the ICRF frame as

a reference.

The geocentric counterpart of this system is the Geocentric Celestial Reference Frame

(GCRF). Within the software, selecting "ICRF" automatically moves the origin to the

working central body, so it actually represents GCRF when selecting Earth.

2.1.2 ITRF

The International Terrestrial Reference Frame (ITRF) is an Earth-centered system fixed

to the rotating earth. Its origin is at the center of mass of the Earth, and its axes

are attained by coordinates of defining observing stations on the surface of the Earth,

and since tectonic motion of plates affect these stations, this system is periodically

re-adjusted. Conversion between ITRF and ICRF is performed using several models

that incorporate IERS Earth Observation Parameters using IAU-2000A theory, with

2006 update for precession.

• Precession (P)

The gradual change in the orientation of Earth’s axis of rotation and the location of

the equinox [6]. It is caused by a combination of factors, including the gravitational

forces of the planets (planetary precession) which cause the orientation of the

ecliptic to change steadily, and the torque produced on Earth’s irregular mass

distribution by the Sun and Moon (luni-solar precession), resulting in a wobbling

motion of the Celestial Ephemeris Pole (CEP) around the ecliptic north pole.

Together, these two forms of precession are known as general precession.
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• Nutation (N)

The short-term and periodic variation of Earth’s equator and vernal equinox,

primarily caused by the torque exerted on Earth’s equatorial bulge by the Moon [7].

It is made up of a combination of movements with various periods, the longest of

which has a period of 18.6 years, and is related to the regression of the Moon’s

orbit’s node. Nutation effects also include the torque exerted by the gravitational

pull of Solar System bodies on the oblate Earth.

• Polar Motion (Π)

Movement of the rotation axis with respect to the Earth’s crust [7]. The Celestial

Intermediate Pole (CIP) is the axis of Earth rotation, and it is normal to the equator.

• Earth Rotation (Θ)

Describes the rotation of Earth about its own axis [8].

The Earth Rotation Angle is the angle between the Celestial Intermediate Origin

(CIO) and the Terrestrial Intermediate Origin (TIO), and is related to UT1. It was

previously known as the stellar angle [9].

The transformation can be defined

rICRF = P(t)N(t)Θ(t)Π(t)rIT RF (2.1)

And for velocity, we have to include the rotation rate of Earth, which is related to the

Earth rotation angle and is given by

wE = 7.292155146706979×10−5
{

1− LD

86400

}
(2.2)

Where LD, length of day, represents the rate at which UT1 is changing at a particular

moment in time. It is maintained by the IERS. The velocity conversion is then

vICRF = P(t)N(t)Θ(t)wx
EΠ(t)rIT RF +P(t)N(t)Θ(t)Π(t)vIT RF (2.3)

Where

wx
E =

 0 −wE 0
wE 0 0
0 0 0

 (2.4)
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The rotation of the Earth is a 3-rotation through the Earth rotation angle, θERA.

θERA = 2π(0.7790572732640+1.00273781191135448(JDUT 1 −2451545.0))
(2.5)

Θ(t) = Rz(θERA) (2.6)

Here, JDUT 1 is the Julian date expressed in UT1.

Polar motion matrix PI is calculated by [10]

Rz(−s′)Ry(xp)Rx(yp) (2.7)

Where xp and yp are the time-dependent coordinates of the Celestial Ephemeris Pole

interpolated from Earth Orientation Parameters (EOP) files provided by the IERS. The

variable s′ is the TIO locator given by

s′ =−0.0015”

(
a2

c

1.2
+a2

a

)
TT T ≈−0.000047”TT T (2.8)

Here, ac is the Chandler wobble, and aa is the annular wobble of the pole. TT T is the

terrestrial time.

The combined Precession-Nutation matrix can be computed as follows.

PN =

1−aX2 −aXY X
−aXY 1−aY 2 Y
−X −Y 1−a(X2 +Y 2)

Rz(s) (2.9)

a =
1
2
+

1
8
(X2 +Y 2) (2.10)

X and Y are the coordinates of the CIP unit vector in the ICRS, and s is the CIO

locator. Computation of these values are done by evaluating series expansions with

thousands of terms, so they are pre-computed at 1 day intervals and interpolated to

reduce computational complexity.

2.1.3 J2000

J2000, J2K, or EME2000 is the inertial frame defined by the Mean Equator and Mean

Equinox (MEME) of the J2000 epoch (1 Jan 2000 12:00:00.000 TDB). The z-axis is

aligned with the celestial North Pole, and the x-axis is aligned with the mean equinox.

10



It is realized by the FK5 IAU76 theory, which uses the precession (1976 IAU Theory),

nutation (1980 IAU Theory), sidereal time, and an adjustment to the equation of the

equinoxes. Until the emergence of the ICRF, the J2000 axes were considered the best.

The Frame Bias matrix, B, is used to rotate from ICRF to J2000 [10]. It is obtained by

three sets of rotations, Rx(−η0)Ry(ξ0)Rz(δα0), where η0 and ξ0 are the offsets from

the ICRS pole, and δα0 is the shift in the origin. η0 = −6.8192 mas, ξ0 = −16.6170

mas, δα0 =−14.6 mas, all converted to radians.

[B] =

1− 1
2(δα2

0 +ξ 2
0 ) δα0 −ξ0

−δα0 −η0ξ0 1− 1
2(δα2

0 +ξ 2
0 ) −η0

ξ0 −η0δα0 η0 +ξ0δα0 1− 1
2(η

2
0 +ξ 2

0 )

 (2.11)

Note that the frame bias is not always a precise transformation, because if it were, there

would not be a benefit of using a non-rotating origin.

2.1.4 True/Mean of Date/Epoch

The True of Date (TOD) and Mean of Date (MOD) systems are intermediate coordinate

systems appearing in FK5 reduction.

A sequence of Euler rotations are used for transformation between J2000 and Mean Of

Date. The rotation angles are calculated by applying cubic polynomials of time since

the J2000 epoch (as measured in JED) according to the angles and rates of 1976 IAU

Theory of Precession, taken from the US Naval Observatory circular No. 163.

In case of transformation between Mean of Date and True of Date axes, the nutations

in longitude and obliquity (according to 1980 Nutation model), and the mean obliquity

are used, followed by the update to the equation of the equinoxes.

Figure 2.2 : FK5 Reduction Components [4].

There is also an additional property associated with these frames as follows.
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• of Date. The epoch of the coordinate system is always the same as the epoch of

the associated time of ephemeris generation. Hence, the nutation parameters are

determined at each step.

• of Epoch. The epoch of the coordinate system is constant, so the nutation matrix

does not change at steps. This approach is not usually used due to the error it

introduces.

2.1.5 B1950

The B1950 (Besselian year 1950) axes were considered the most accurate

representation of inertial axes until the J2000 frame. These axes are derived from

the FK4 star catalog and its method for defining the MEME. The epoch is the start

of the Besselian year 1950, which is 31 Dec 1949 22:09:46.866 (A Besselian year is

the time it takes for the mean solar right ascension to increase by 24 hours [11]). The

B1950 axes can be obtained by applying a constant rotation to the J2000 axes using

the following equation by Seidelmann [7].

rJ2000 ≈

0.9999256794956877 −0.0111814832204662 −0.0048590038153592
0.0111814832391717 0.9999374848933031 −0.0000271625947142
0.0048590037723143 −0.0000271702937440 0.9999881946023742

rB1950

(2.12)

2.1.6 TEME

The true equator, mean equinox (TEME) system is used in SGP4 model, and is related

to the uniform equinox [7].

Some of the definitions of this system is ambiguous and is not recommended to use

for modern applications. The implemented frame within the software follows the

conventions and relations to other frames that are set out in [5].

rJ2000 = P(t)N(t)Rz(−EqEquinox1982)rT EME (2.13)

Where EqEquinox1982 signifies the equation of equinox according to the IAU 1982

model.

EqEquinox1982 ≈ ∆ψ1980 cos(ε1980) (2.14)
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2.2 Orbital Element Types

In this chapter, definitions of Orbital Element Sets associated with Coordinate Types

used in the software are given along with procedures to convert each of them to a simple

state vector. The state of a spacecraft, meaning its orbit’s shape and orientation, can be

defined with six independent quantities. The collection of six different parameters are

called an element set, or a state vector if they are the position and velocity vectors,

r0 and v0 There are various orbital element sets which can be used for different

applications, but they all represent initial conditions of a two-body orbit. Some of

these sets also include time as the seventh element. The variety in these sets originate

from complications arising from some peculiar geometries and usually tend to remove

singularities. While most of the element sets can be used for any arbitrary celestial

body, the Fixed Spherical, SGP4, and sets that use the Mean Element Theory can only

be used when the central body is Earth.

2.2.1 Cartesian

The position and velocity vectors are most commonly expressed in rectangular

Cartesian coordinate frame, which is referred to as the Earth-Centered Inertial (ECI)

frame. Both vectors have three components along the principal axes of the inertial

reference frame that originates at the center of the Earth.

Table 2.1 : Cartesian Element Set.

Element Description
x Position along the x-axis
y Position along the y-axis
z Position along the z-axis
ẋ Velocity along the x-axis
ẏ Velocity along the y-axis
ż Velocity along the z-axis
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2.2.2 Keplerian

Keplerian element set, also known as Classical Orbital Elements, is the most widely

used collection of parameters when defining an orbit, as it is possible to intuitively

discern the general shape of the orbit by looking at the parameters.

Table 2.2 : Keplerian Element Set Description.

Element Description
a Semi-major axis. Half the length of the longer axis of the orbital

ellipse. Defines the size of the orbit
e Eccentricity. Describes the shape of the ellipse (e ∈ R,0 ≤ e < 1,

where 0 = circular orbit).
i Inclination. Angle between the orbital and equatorial planes.

Inclinations greater than 90◦ indicate retrograde motion; its
revolution around the Earth is in the opposite direction of Earth’s
rotation.

Ω Right ascension of the ascending node. The angle between the
positive X axis (vernal equinox) and the node line (point on the
orbit at which the satellite crosses the equator from south to north).

ω Argument of perigee. Angle from the ascending node to the
direction of perigee (eccentricity vector), measured in the orbit
plane and in satellite’s motion’s direction. (w ∈ R,0 ≤ e < 360◦)

θ True anomaly. Angle between the eccentricity and the position
vectors, measured in the direction of satellite motion and in the
orbit plane.

Figure 2.3 : Keplerian Element Set [12].
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The software allows entering alternative parameters that can be converted from one

into another as the user might choose to use them instead. These parameters are given

in Table 2.3. The equations involved are given below.

ra = a(1+ e) (2.15)

ha = a∗ (1+ e)−RE (2.16)

T = 2π

√
a3

µ
(2.17)

N =

√
µ

a3 86400/ (2π) (2.18)

rp =
a∗ (1− e2)/ (1− e))

2/ (1− e)−1
(2.19)

hp = rp −RE (2.20)

λasc = tan−1 (C21 /C11)+Ω (2.21)

M(θ) =


θ (e = 0)

2tan−1
(√

1−e
1+e tan θ

2

)
− e

√
1−e2 sin(θ)

1+ecos(θ) (e ̸= 0)
(2.22)

E = 2tan−1

(√
(1− e)
(1+ e)

tan(θ /2)

)
(2.23)

u = ω +θ (2.24)

tp = M ·T /2π (2.25)

tasc =
T
2π

[M(θ)+M(ω)−u] (2.26)

Where C21 and C11 are the elements of ICRF to ITRF matrix. Details are given in

Chapter 2.1.1.
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Table 2.3 : Keplerian Elements Alternatives.

Parameter
to Replace

Element Description Equation

a

Apogee
Radius (ra)

Distance from the center of
the central body to the farthest
point in orbit.

2.15

Apogee
Altitude (ha)

Distance from the surface of
the central body to the maxi-
mum orbital radius .

2.16

Period (T ) Amount of time it takes for one
complete revolution around the
central body.

2.17

Mean
Motion (n)

Number of orbits per time unit. 2.18

e

Perigee
Radius (rp)

Distance from the center of
the central body to the closest
point in orbit.

2.19

Perigee
Altitude (hp)

Distance from the surface of
the central body to the mini-
mum orbital radius.

2.20

Ω

Longitude
of the
Ascending
Node (λasc)

Earth-fixed longitude in ITRS
frame where the satellite has
crossed the inertial equator
from south to north at, or prior
to the initial condition of the
orbit.

2.21

θ

Mean
Anomaly
(M)

The angle from the eccentricity
vector to the hypothetical posi-
tion vector obtained by assum-
ing the satellite is constantly
moving in its average angular
rate.

2.22

Eccentric
Anomaly
(E)

The angle between the central
body and the auxiliary circle
of the orbit, where a line per-
pendicular to the semi-major
axis intersects the satellite’s
position on the ellipse.

2.23

Argument of
Latitude (u)

Sum of the Argument of
Perigee and the True Anomaly.

2.24

Time Past
Perigee (tp)

The elapsed time since the
last perigee pass assuming
two-body motion.

2.25

Time Past
Ascending
Node (tasc)

The elapsed time since the
last ascending node crossing
assuming two-body motion.

2.26
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The procedure to obtain state vector from Keplerian elements follows the

classical Euler angle sequence [Rz(γ)][Rx(β )][Rz(α)] and is given in Algorithm 1.
Algorithm 1: Keplerian Elements to State Vector [12]

1 rx̄ =
h2

µ

1
1+ecosθ


cosθ

sinθ

0

 vx̄ =
µ

h


−sinθ

e+ cosθ

0


2 [Q] =−sinΩcos isinw+ cosΩcosw −sinΩcos icosw− cosΩsinw sinΩsin i

cosΩcos isinw+ sinΩcosw cosΩcos icosw− sinΩsinw −cosΩsin i
sinisinw sinicosw cos i


3 rx = [Q]rx̄ vx = [Q]vx̄

The reverse transformation is also given in Algorithm 2 as it is used a lot.

Algorithm 2: State Vector to Keplerian Elements [12]

1 Calculate the magnitudes of vectors r⃗ = xî+ y ĵ+ zk̂ and v⃗ = vx î+ vy ĵ+ vzk̂.
r =

√
r⃗ · r⃗ v =

√
v⃗ · v⃗

2 Compute the radial velocity
vr = r⃗ · v⃗/r

3 Compute the specific angular momentum and its magnitude.

h⃗ = r⃗× v⃗ =

∣∣∣∣∣∣
î ĵ k̂
x y z
vx vy vz

∣∣∣∣∣∣ h =
√⃗

h · h⃗

4 Compute the node line vector and its magnitude.

N⃗ = k⃗× h⃗ =

∣∣∣∣∣∣
î ĵ k̂
0 0 1
hx hy hz

∣∣∣∣∣∣ N =
√

N⃗ · N⃗

5 Using these quantities, we can obtain each Keplerian element.

a =
h2

µ

1
(1− e2)

e =

√√√√1+
h2

µ2

(
v2 −

2µ

r

)
i = cos−1 (hz/h)

Ω =

{
cos−1 (Nx/N) (NY ≥ 0)
2π − cos−1 (Nx/N) (NY < 0)

ω =

{
cos−1 ( N⃗ ·⃗e

Ne ) (ez ≥ 0)

2π − cos−1 ( N⃗ ·⃗e
Ne ) (ez < 0)

θ =


cos−1

[
1
e

(
h2

µr
−1

)]
(vr ≥ 0)

2π − cos−1

[
1
e

(
h2

µr
−1

)]
(vr < 0)

17



2.2.3 Equinoctial

Mathematical singularities arise during state vector to orbital elements transformation,

when eccentricity and inclination are approaching zero. This can be observed for

near-circular orbit applications which low-altitude remote sensing and geostationary

satellites use in order to provide constant relative velocity and constant distance, with

the latter further needing to be placed in a near-equatorial plane (i.e. i ≈ 0) [13]. The

argument of perigee is a problematic element for circular orbits as there is no defined

perigee (i.e., the line of apsides is not well-defined when eccentricity approaches

zero). Consequently, small orbital changes that change the location of perigee can

lead to great errors when calculating ω (argument of perigee). Similarly, the line of

nodes become indeterminate as the inclination approaches zero, hence the Ω (RAAN)

equations become singular.

The Equinoctial set, which is also known as the Non-singular elements, removes the

singularities at e = 0, and i = 0 and i = 90◦ using the longitude of periapsis, which is

measured in two different planes when the orbit of the spacecraft is non-equatorial, but

introduces a singularity for true retrograde orbits (i = 180◦). In order to circumvent

this issue, a seventh parameter called the retrograde factor f is used which is -1 for

retrograde and +1 for posigrade orbits.

Figure 2.4 : Equinoctial Coordinate Frame
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Table 2.4 : Equinoctial Element Set.

Element Description
a Semi-major axis. Half the length of the longer axis of the orbital

ellipse.
h Eccentricity vector component. The eccentricity vector

is in the equinoctial reference frame, and points from
the central body to perigee and has a magnitude of e.
h = esin( f Ω+ω)

k Eccentricity vector component. k = ecos( f Ω+ω)
p Ascending node vector component. The ascending node vector

is defined in the equinoctial reference frame. It points from
the central body to ascending node and has a magnitude of i.
p =

[
tan i

2

] f sinΩ

q Ascending node vector component. q =
[
tan i

2

] f cosΩ

λm Mean Longitude. Specifies the position of the spacecraft within
its orbit at epoch. λm = Ω+ω +M(θ)
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Algorithm 3 describes the necessary steps to transform Equinoctial Set into Cartesian

elements.

Algorithm 3: Equinoctial to State Vector Algorithm [14]

1 Find the equinoctial reference frame basis vectors ( f ,g,w) as shown in Figure
2.4.

f =
1

1+ p2 +q2

1− p2 +q2

2pq
−2 f p


g =

1
1+ p2 +q2

 2 f pq
(1+ p2 −q2) f

2q


w =

1
1+ p2 +q2

 2p
−2q

(1− p2 −q2) f


2 Find the eccentric longitude F and true longitude L, the auxiliary longitudes

associated with this set. Kepler’s Equation must be solved to obtain F .
Calculating L requires the auxiliary quality b
λ = F +hcosF − k sinF

b =
1

1+
√

1−h2 − k2

sinL =
(1− k2b)sinF +hkbcosF −h

1−hsinF − k cosF

cosL =
(1−h2b)cosF +hkbsinF − k

1−hsinF − k cosF
3 Compute the position and velocity in the equinoctial frame.

r = a(1−hsinF − k cosF) =
a(1−h2 − k2)

1+hsinL+ k cosL

X = r cosL Y = r sinL

Ẋ =−
√

µ /a(h+ sinL)
√

1−h2 − k2

Ẏ =−
√

µ /a(k+ cosL)
√

1−h2 − k2

4 Compute the state vector.
r = X f +Y g v = Ẋ f + Ẏ g

2.2.4 Spherical

The Spherical coordinate type uses polar coordinates instead of rectangular. Spherical

system is also called as the ADBARV system due to the symbols of its elements. If
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a fixed coordinate system is used, longitude and latitude replace right ascension and

declination, respectively.

Table 2.5 : Spherical Element Set.

Element Description
α Right Ascension. The angle from the X axis (vernal equinox)

to the projection of the position vector of the satellite onto the
equatorial plane, measured towards the Y axis.

α = tan−1

(
y
x

)
δ Declination. The angle between the inertial equatorial plane and

the spacecraft position vector, measured towards the Z axis.

δ = sin−1

(
z
r

)
β Flight Path Angle. The angle between the radius and velocity

vectors is the vertical flıght path angle, whereas its complement is
the horizontal one.

β = cos−1

(
r⃗ ·V⃗
|⃗r ·V⃗ |

)
A Azimuth. The angle, measured in the spacecraft instantaneous

geocentric horizontal plane, that is between the projection of
the velocity vector onto the said plane and the local northerly
direction. Contrary to most disciplines, it is positive when
measured clockwise from due north.

A = tan−1

(
Â× P̂ · r⃗ / r

Â · P̂

)
where Ŵ =

r⃗×V⃗

|⃗r×V⃗ |
Â =

Ŵ × r̄

|Ŵ × r̄|

P̂ =
(⃗r× k̂)× r⃗

|(⃗r× k̂)× r⃗|
r Radius. Magnitude of the position vector. r =

√
x2 + y2 + z2

V Velocity. Magnitude of the velocity vector. V =
√

ẋ2 + ẏ2 + ż2
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Figure 2.5 : Spherical Coordinate System.

It can be seen in Figure 2.5 that a right spherical triangle can be formed by the arcs of

MO, ON, and NM, which yields the following equation:

cos i = cosδ sinA (2.27)

When A = 90◦, the minimum inclination is achieved which is exactly δ . Therefore,

the smallest inclination the orbit of a launched spacecraft can possibly have is equal to

the latitude of the launch site [15].

Algorithm 4 describes the steps to obtain Cartesian elements from Spherical elements.
Algorithm 4: Spherical Elements to State Vector Algorithm [16].
1 The x̂ axis becomes colinear with the radius vector using the rotation sequence

[Rz(α)][Ry(−δ )] .Multiplying with the appropriate rotation matrices yield the
following.
x = r cosδ cosα

y = r cosδ sinα

z = r sinδ

2 In order to align the x̂ axis along the velocity vector direction, the sequence of
rotation is given by [Rz(α)][Ry(−δ )][Rx(−A)][Ry(−β )].
ẋ =V [cosα(−cosAsinβ sinδ + cosβ cosδ )− sinAsinβ sinα]
ẏ =V [sinα(−cosAsinβ sinδ + cosβ cosδ )+ sinAsinβ cosα]
ż =V [cosAcosδ sinβ + cosβ sinδ ]

2.2.5 Fixed Spherical

When the problem requires the orbit to be referenced relative to the Earth, a modified

version of the spherical coordinate system that is fixed to and rotates with the body can
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be used. This system uses the Earth-fixed position parameters with inertial velocity

parameters. It is similar to the LDBARV system in literature where geographic

longitude replaces right ascension, but the declination is replaced with latitude as well

in this system.

In order to calculate the geodetic parameters, we must first perform ICRF to ITRS

transformation on the position vector. The transformation matrix is given in Chapter

2.1.1. The fixed position vector will be referred as r⃗′ = x′î+ y′ ĵ+ z′k̂ below, and RE is

the Equatorial radius of the Earth whereas f is the flattening.

Table 2.6 : Fixed Spherical Element Set.

Element Description
h Geodetic Altitude. Position of the spacecraft relative to the

reference ellipsoid considering Earth is an oblate spheroid as
shown in Figure 2.7.

h = r′−RE

[
1− f sin2

δ −
f 2

2
sin2 2δ

(
RE

2
−

1
4

)]
λ Celestial Longitude. Longitude of the spacecraft’s subsatellite

point, measured from the vernal equinox. Also known as right
ascension. The reason it is used instead of geodetic longitude
is to remove the dependency to the orbit epoch, so that the right
ascension at Greenwich meridian does not have to be calculated.
λ = tan−1

(
y′
x′

)
, (−180◦ ≤ λ ≤ 180◦)

φ Geodetic Latitude. The angle between the normal to the reference
ellipsoid that passes through the equatorial plane and the position
of the satellite as shown in Figure 2.7.
φ = δ + sin−1

[
RE
r′

(
f sin2δ + f 2 sin4δ

(
RE
r′ −

1
4

))]
FPA (β ) Flight Path Angle. The angle between the velocity and radius

vectors as described in Table 2.5.
A Azimuth. Velocity azimuth angle as described in Table 2.5.
V Velocity. Magnitude of the velocity vector.
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Figure 2.6 : Fixed Spherical Coordinate Frame.

Figure 2.7 : Geocentric and Geodetic Altitudes [16]. The oblateness of Earth causes
the difference.

Algorithm 5 describes the steps to obtain Cartesian elements from Fixed Spherical

elements.
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Algorithm 5: Fixed Spherical Elements to State Vector Algorithm
1 Find the geocentric latitude and radius of the sub-latitude point.

φ ′ = tan−1 [(1− f )2 tanφ ], −90◦ ≤ φ ≤ 90◦

rE =
RE(1− f )√

1− f (2− f )cos2 φ ′

2 Position vector in the fixed reference frame is obtained.
x∗ = rE cosφ ′+hcosφ

y∗ = 0
z∗ = rE sinφ ′+hsinφ

3 Rotate in z-axis.
x′ = x∗ cosλ

y′ = x∗ sinλ

z′ = z∗

4 Using the inverse of the ICRF-ITRS transformation matrix, revert back to the
inertial frame.
r = [U ICRF

IT RS ]
−1r′

5 Calculate velocity in the local horizontal plane.
ẋ′ =V sinβ

ẏ′ =V sinAcosβ

ż′ =V cosAcosβ

6 The Euler Angle representation [Rz(α)][Ry(π /2−δ )][Ry(−π /2)] can be
used to find the orientation of the local horizon frame in relation to the
Cartesian frame . This yields the rotation matrix:

CLH =

 cosδ cosα cosδ sinα sinδ

−sinα cosα 0
−sinδ cosα −sinδ sinα cosδ

 where δ = sin−1 z
r ,

α = tan−1 y
x

7 Obtain the velocity vector in the Cartesian frame.
v = [CLH ]

−1v′

2.2.6 Delanuay

These variables, introduced by Delaunay who used them to elaborate his Lunar

Theory [17], consist of canonical action-angle variables and are widely used in general

perturbation theories. The first three variables represent the angles and the last three

represent the conjugate actions, relatively.
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Table 2.7 : Delaunay Variables.

Element Description
M Mean Anomaly. Same as Keplerian set.
ω Argument of Perigee. Same as Keplerian set.
Ω Right Ascension of the Ascending Node. Same as Keplerian set.
L Orbital Energy Term. L =

√
µa

G Magnitude of Angular Momentum. Angular momentum vector
is perpendicular to the orbital plane. G = L

√
1− e2

H Z-component of Angular Momentum. H = Gcos i

Reverse transformation from the Delaunay variables is a linear process. We can obtain

the Kepler elements and use them to calculate the state vector.

a = L2 /µ e =
√

1− (G/L)2 i = cos−1 (H /G)

2.2.7 Others

Poincaré Variables

This is the canonical equivalent of the Equinoctial set, ready to be used in problems

requiring Hamiltonian dynamics [5]. They have the advantage of being singular even

for circular and equatorial orbits, and can easily be organized into symplectic pairs of

coordinates and momenta [18].

λM = Ω+ω +M L =
√

µa

g =

√
2L (1−

√
1− e2)cos(ω +Ω) G =−g tan(ω +Ω)

h =

√
2L
√

1− e2(1− cos i)cosΩ H =−h tanΩ

Variations of Equinoctial Set

There are two modifications to the equinoctial set. The first one defines the ascending

node vector components as

p =

[
sin

i
2

] f

sinΩ q =

[
sin

i
2

] f

cosΩ
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This variant is simpler, but less beneficial when working with perturbational equations

[19]. The other variant uses the auxiliary parameter g instead of a, and uses the true

longitude λt , instead of mean longitude λm.

g = a(1− e) λt = Ω+ω +θ

Mean Element Sets

The Mean element theory is used to approximate motion by isolating the slowly

varying effects, such as the motion of Ω due to J2 gravity term, from the effects

of fast motions such as the change of true anomaly. The "mean" in this context is

not a numerical average of sampling, but instead refers to averaging the differential

equations of motion. The fast terms are averaged and used to estimate the motion of

slowly varying ones. These sets can only be used for Earth-centered orbits and are

useful for applications sensitive to gravitational perturbations.

The Brouwer-Lyddane Mean element set [20,21] has two versions called "Short" and

"Long". The short one account for only the short period terms and the J2 oblateness

term as the sole perturbation force. The long one also considers the long period effects

and other oblateness terms up to J5. The most visible difference is usually seen at the

mean eccentricity due to oscillation.

Kozai-Izsak Mean Elements [22] are extremely similar to the Short version of the

Brouwer-Lyddane set, with the only difference coming from formulation. They can be

used in place of the classical Keplerian elements when averaging over short periods.

The same cannot be said for the long one as other perturbing forces (e.g. SRP, drag,

third-bodies) can have a dominating influence.

2.3 Time Systems

The equations of motion in astrodynamics require a unique time system, and all

satellite operations depend on precise timekeeping. There are four fundamental time

systems; universal, sidereal, atomic, and dynamical. The first two are mathematically

related and based on the Earth’s rotation, while the last two are much more precise and

independent. Different applications require different time systems, hence, the ability to

convert between different systems is of utmost importance. The software is equipped

27



Figure 2.8 : Time Systems Relations [23].

with the necessary algorithms to convert from one time system to another, as well as

the ability to represent time in different formats.

2.3.1 Universal Time

The Solar time is measured by the successive passes of the Sun over a longitude, and

for this the Greenwich meridian was chosen as the 0 degree point for a fixed reference

to define the start of a day. The irregularities in the solar motion due to factors like the

eccentricity of the orbit of the Earth and accompanied seasonal variations, a convention

called Universal Time that used a fictitious mean Sun (assuming uniform motion as a

function of the sidereal time) was adopted [5]. The three variations of the UT along

with UTC are described below.

1. UT0

Observation of UT at a specific ground station. Defined as 12h plus the Greenwich

Hour Angle GHA, it is related to UT1 as follows

UT 1 =UT 0+∆l

where ∆l is the pole movement in longitude and is given as

∆l =
1s

15
(xp sinλ − yp cosλ ) tanφ)
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where xp and yp are instantaneous pole coordinates and λ and φ are latitude and

longitude of the observation site.

2. UT1

UT1 is obtained by adding ∆UT 1 to the UTC, which is the correction factor for the

periodic variations caused by the zonal tidal deformations of the polar moment of

inertia, as described by the following equation [24].

∆UT 1 =
N

∑
i=1

[
Ai sin(

5

∑
j=1

ki jα j)

]

The most accurate values, which use 62 periodic components during calculation,

can be obtained from the Earth Orientation Bulletin Series D by IERS [25].

The angular rate of UT1 in the present day has been defined to closely follow

Newcomb’s convention for mean solar time, based on the mean motion of the Sun

reduced from 19th-century observations.

3. UT2

Correcting UT1 or seasonal variations yield UT2; UT 1 + ∆S, where ∆S is the

periodic seasonal variation on the earth rotation in seconds and is given as

∆S = 0s022sin2πt −0s120cos2πt −0s0060sin4πt +0s0070cos4πt

Where t is the date in Besselian years.

t = 2000.00+MJD−51544.02/365.2422

4. UTC

Coordinated Universal Time. It is linked to TAI by an integer second offset that is

regularly updated to keep in close agreement with UT1, up to 0.9s difference. The

list of leap seconds can be obtained from the IERS Bulletin C series.

UTC = TAI −LeapSeconds

2.3.2 Dynamical Time Systems
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Dynamical time is derived from the dynamical motion of celestial bodies using

relativistic corrections. They are used for astronomical calculations.

(a) Terrestrial Dynamical Time (TT)

Used to be known as TDT and is the successor of Ephemeris Time, is

independent of geocentric ephemerides or equations of motion, and represents

the time that would be measured by a perfect clock on the surface of the Earth

geoid.

T T = TAI +32.184s

(b) Dynamical Barycentric Time (TDB)

The independent variable of barycentric solar system ephemerides, and differs

from TT only by periodic terms which causes a difference of 2ms.

T DB = T DT +
2rs

AUṅe
ee sinE +other

Where rs is the Schwarzschild radius (1.478 km), ne is the Earth’s mean

motion around the Sun (1.991e−7rad/s) and ee is the Earth’s orbital

eccentricity (0.016708617). “Other” includes small effects contributed by the

third bodies, especially the Moon, and the diurnal motion of the Earth. E is

the eccentricity anomaly of the Earth, which can be approximated to change

the equation to include the mean anomaly of Earth, Me, instead. The final

approximated equation is then [26]

T DB = T DT +0.001658sinMe +0.00001385sin2Me

Where M = 6.240035939 + 628.3019560TT DT in radians and TT DT is in

Julian Centuries.

(c) Barycentric Coordinate Time (TCB)

The relativistic time coordinate of the Barycentric Celestial Reference

System which describes the motion of solar-system objects in a non-rotating

relativistic frame centered at the solar-system barycenter. TCB is linearly

related to TDB with a relation that is chosen to match the rate of TDB to TT
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for the time span covered by the JPL Development Ephemerides.

TCB = T DB+LB(JD−2443144.5)∗86400s+P

Where LB = 1.55051976772e−8 and P ≈ 6.55e−5s [27]

(d) Geocentric Coordinate Time (TCG)

The relativistic time coordinate of the Geocentric Celestial Reference System.

TCG = T T +LG(JD−2443144.5)∗86400s

Where LG = 6.969290134e−10

2.3.3 Julian Date

The amount of time passed from the epoch January 1, 4713 B.C., 12:00. A Julian Day,

JD, starts at noon every day so that the astronomers can make their observations in a

single day. Given the date, Julian Date between March 1, 1900 and February 28, 2100

can be obtained from equation 2.28.

JD= 367·Y −INT

[
7(Y + INT

(M+9
12

)
)

4

]
+INT

(
275 ·M

9

)
+d+1721013.5+

( s
60 +min

)
60

+h

24
(2.28)

If the required date is not in this interval, algorithm 6 by Meeus [28] can be used

instead. Algorithm 7 is also used in the software to get UTC date from a given Julian

Date.

Algorithm 6: Calendar Date to Julian Date Conversion

1 Given Y = Year, M = Month from 1 to 12, D = Day with decimals
if M == 1 or M == 2 then

Y = Y - 1 and M = M + 12
end if

2 A = INT(Y/100) B = 2 - A + INT(A/4)
3 JD = INT(365.25(Y + 4716)) + INT(30.6001(M+1)) + D + B – 1524.5
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Algorithm 7: Julian Date to Calendar Date Conversion [28]

1 JD = JD0 + 0.5 Z = INT(JD) F = FRAC(JD)
2

if Z <2299161 then
A = Z

else

α = INT

(
Z −1867216.25

36524.25

)
A = Z +1+α − INT(α/4)

end if

3 B = A+1534 C = INT

(
B−122.1

365.25

)

D = INT(365.25C) E = INT

(
B−D

30.6001

)
4 Day = B - D - INT(30.6001E) + F

Month = (E - 1) % 13
Year = C - 4716 if Month >2

= C - 4715 otherwise

For high precision, the software does not store the whole JD in a single variable

but separates the integer and decimal parts in two different 64-byte registers. Other

commonly used Julian Date variations are given below.

• Modified Julian Date. Same as Julian date, with a fixed offset. It starts each day

at 00:00 hours rather than 12:00 hours, and uses a simplified numbering system for

days.

MJD = JD−2,400,000.5

• Julian Ephemeris Date. A measure of elapsed TDT days from a reference point

of noon on November 24, 4713 BC in the Gregorian calendar. It is based on the TT

time scale.

• Julian Centuries. Most astronomical relations use the Julian centuries from a

specific epoch.

JC = (JD−2451545)/36525
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2.3.4 GPS Time

GPS time operates on an atomic scale like TAI with an offset value. It does not consider

the rotation of Earth, so it does not include leap seconds or other adjustments that

are periodically made to UTC. When GPS time was first established in 1980, it was

synchronized with UTC, but it has since deviated from UTC and now maintains a

constant offset from TAI [29].

GPS = TAI −19s

GPS time is measured as the amount of time that has passed since 6 January 1980

00:00:00:00 UTC, which is known as the GPS epoch. It is reported in terms of the

number of weeks that have passed since the epoch and the number of seconds into the

current week. Leap seconds should be accounted for when converting between UTC

and GPS time.

2.3.5 Others

In addition to the fundamental time systems, various other time display formats can be

used in the software.

• Local Time. Using a specified time zone with an offset from the UTC for civilian

timekeeping.

• Canonical Times. Earth Canonical Unit is the time it would take a fictional satellite

to travel one radian in a circular orbit of Earth’s equatorial radius (
√

R3
E/µE).

Sun canonical unit equals one sidereal year (
√
(AU)3/µS).

• GPS Z-count. Elapsed time is measured in units called Z counts, which are equal

to 1.5 seconds. The Z count is the number of complete weeks that have passed since

the GPS epoch, plus the number of 1.5 second increments into the current week.

• Epoch. Time elapsed relative to the given scenario epoch. Can be in seconds, days,

hours, or years. Alternatively, "Mission Elapsed Time" can be used to see seconds

passed since a user-defined epoch.
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3. ORBITAL PROPAGATORS

In orbital dynamics, the most fundamental equation is the law of universal gravitation,

which describes how two bodies are attracted to each other.

Fg = MmG/r2 (3.1)

Fg = gravitational force between bodies

M,m = masses of two bodies

G = universal gravitational constant

r = distance between the center of mass of two bodies

While there is a myriad amount of celestial bodies in the universe, the motion of the

spacecraft is usually governed by a single body. Starting from the simple two-body

model, we will go through different levels of orbital propagators.

3.1 Two-Body

In two-body propagator, we make the following assumptions:

1. Attraction to a single central body governs the motion, hence the chosen coordinate

system is inertial.

2. The mass of the satellite is negligible compared to that of the central body.

3. The bodies are only acted by gravitational and centrifugal forces.

4. The bodies are perfectly spherical and their masses are concentrated at the centers

(uniform density).

For most satellite orbits, this assumption produces highly accurate results in the

short-term, as the influence of the Earth on the vehicle is about 1000 factors larger than

any other influence. However, there are several perturbations such as the oblateness of
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Figure 3.1 : 2-Bodies in Inertial Reference Frame

the Earth, atmospheric drag, and solar radiation that notably affect the orbital motion

in long-term. Hence, this model is only good for a first approximation.

Two-body propagator, like other propagators, works by representing the state vector

of the satellite as a function of time. That is, given the initial position and velocity

of an orbiting body, we can determine the position and velocity in a later time. The

most straightforward approach for this is to apply the equations of motion based on the

universal law of gravitation, that is

Fg = m1a1 = m1m2G/r2 (3.2)

We can express acceleration as the second derivative of position and cancel out the

mass.

R̈1 = Gm2
r
r3 (3.3)

Which leads us to

Ẍ1 = Gm2
X2 −X1

r3 Ÿ1 = Gm2
Y2 −Y1

r3 Z̈1 = Gm2
Z2 −Z1

r3 (3.4)

Ẍ2 = Gm1
X1 −X2

r3 Ÿ2 = Gm1
Y1 −Y2

r3 Z̈2 = Gm1
Z1 −Z2

r3 (3.5)

Now if we have the initial position and velocity vectors, we can use a numerical

integration method such as Runge-Kutta to obtain the state vectors in desired time

steps. These equations give us the motion of both bodies in an inertial frame of

reference. We can modify them as follows to obtain the relative motion of the
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secondary mass with respect to the first one.

ẍ =− µ

r3 x ÿ =− µ

r3 y z̈ =− µ

r3 z (3.6)

While this method is sufficient for two-body motion, we should be aware that in

numerical integration, any error from calculating the last state is carried over into the

next calculation. Over time, this error will build up and get worse. Hence, we will use

the exact solution to this problem using Lagrange coefficients, where the error comes

from only the initial calculations and remains constant [30].

Using some algebra and the conservation of momentum, Lagrange came up with

the following equations that express the future state vector using initial position and

velocity vectors.

rrr = f rrr0 +gvvv0 (3.7)

vvv = ḟ rrr0 + ġvvv0 (3.8)

Where the Lagrange coefficients f and g and their derivatives, ḟ and ġ, are given by

f =
xẏ0 − yẋ0

h
g =

−xy0 + yx0

h
(3.9)

ḟ =
ẋẏ0 − ẏẋ0

h
ġ =

−ẋy0 + ẏx0

h
(3.10)

These equations can be expressed in terms of the change in true anomaly, using the

identities:

ẋ0 =−µ

h
sinθ0 ẏ0 =

µ

h
(e+ cosθ0) (3.11)

We obtain

f = 1− µr
h2 (1− cos∆θ) g =

rr0

h
sin∆θ (3.12)

ḟ =
µ

h
1− cos∆θ

sin∆θ

[
µ

h2 (1− cos∆θ)− 1
r0

− 1
r

]
ġ = 1− µr0

h2 (1− cos∆θ) (3.13)

Now we have to find the relation between the true anomaly and time. However, the

equations differ for different type of orbits (elliptic and hyperbolic). Thus, we have

to rewrite Kepler’s equation in terms of a universal variable that is valid for all kinds
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of orbits, namely universal anomaly χ [12]. Universal anomaly can be calculated

iteratively using Newton’s method such as:

χi+1 = χ −

r0vr0√
µ

χ2
i C(zi)+(1−ar0)χ

3
i S(zi)+ r0χ −√

µ∆t

r0vr0√
µ
[1−αχ2

i S(zi)]+(1−ar0)χ
2
i C(zi)+ r0

(3.14)

Where

α =
1
a

zi = αχ
2
i

and C(z) and S(z) are Stumpff functions that can be expanded as

S(z) =


√

z−sin
√

z
(
√

z)3 (z > 0)
sin

√
−z−√

z
(
√

z)3 (z < 0) (z = αχ2)
1
6 (z = 0)

(3.15)

C(z) =


1−cos

√
z

z (z > 0)
cosh

√
−z−1

−z (z < 0) (z = αχ2)
1
2 (z = 0)

(3.16)

Here, z < 0 is for hyperbolas, z = 0 is for parabolas, and z > 0 is for ellipses. A good

first estimation is given by Chobotov [16] as

χ0 =
√

µ|α|∆t (3.17)

Integrating the universal anomaly to Lagrange functions, they become

f = 1− χ2

r0
C(αχ

2) g = ∆t − 1
√

µ
χ

3S(αχ
2) (3.18)

ḟ =
µ

rr0
[αχ

3S(αχ
2)−χ] ġ = 1− χ2

r
C(αχ

2) (3.19)

Now we can obtain the universal anomaly from the time interval, plug it into the

equation, and propagate our orbit analytically. The algorithm implementation is as

follows
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Algorithm 8: Two-Body Algorithm.
r0 = norm(R0)
v0 = norm(V 0)
vr0 =

dot(R0,V 0)
r0

α = 2
r0
− v2

0
µ

The sign of α determines the type of orbit
χ0 =

√
µ|α|∆t

while ratio > tolerance do
Calculate the ratio in equation 3.14
χi+1 = χi − ratioi

end while
Obtain f and g from equations 3.18
Obtain ḟ and ḟ from equations 3.19
Obtain final state from equations 3.7 and 3.8

Since there are no perturbations in two-body model, the orbit will never decay and

keep its orientation forever. An example orbit created by the two-body model is shown

in Figure 3.2.

Figure 3.2 : Orbit constructed using 2-Body propagator.

3.2 N-Body

In 2-Body model, we assumed the only influence on the motion of the spacecraft

was gravitational force of Earth. While this assumption is mostly sufficient for most

Earth-orbiting satellite applications, gravitational pull from other Celestial bodies can

cause enough interference to slightly alter the orbital path of any satellite orbiting

Earth. Furthermore, for the analysis of interplanetary trajectories and Halo-orbits that

are focused around Lagrange points, we must be able to solve the Restricted Three
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Figure 3.3 : 3-Body Problem

Body Problem (RTBP). The problem herein is to determine the motion of an object

in a system of two or more large masses such that the mass of the object is negligible

compared to other bodies. A special case of this problem is called Circular Restricted

Three Body Problem (CRTBP) where the two masses revolve in circular orbits around

their mutual center of gravity. Contrary to the Two-Body problem, this motion does

not have a closed-form solution, but we can formulate equations of motion using a

rotating frame of reference [31].

First, let’s find a generalized solution for n-body problem. From Equation 3.2, we can

express the gravitational force exerted by every object to each other as

Fi j =
Gmim j

||r3
ji||

r̂ ji (3.20)

The accelerations can be expressed

ai j =
n

∑
j=1 ( j ̸=i)

Gm jr ji

||r3
ji||

(3.21)

Then we can use an ordinary differential equation solver to numerically integrate the

equations of motion given that we have the initial state of the masses. Now, let’s

consider the CRBP. Again using 3.2, we can write the forces exerted on the third body

40



m as

F1 =−Gm1m
r2

1
ûr1 (3.22)

F2 =−Gm2m
r2

2
ûr2 (3.23)

From Newton’s second law, we can obtain the acceleration of the body from

mr̈ = F1 +F2 (3.24)

Plugging in

r̈ =−µ1

r3
1

r1 −
µ2

r3
2

r2 (3.25)

Where

µ1 = Gm1 µ2 = Gm2

We can express the relative positions r1 and r2 as

r1 = (x− x1)î+ y ĵ+ zk̂ = (x+π2r12)î+ y ĵ+ zk̂

r2 = (x−π1r12)î+ y ĵ+ zk̂ (3.26)

Where

π1 =
m1

m1 +m2
π2 =

m2

m1 +m2

Considering that the velocity of the center of mass and the angular velocity of the

circular orbit are constant, the 5-term relative acceleration formula can be combined

into

r̈ = (ẍ−2Ωẏ−Ω
2x)î+(ÿ+2Ωẋ−Ω

2y) ĵ+ z̈k̂ (3.27)

Plugging 3.27 and 3.26 into 3.25, we obtain the equations of motion for CRTBP.

ẍ−2Ωẏ−Ω
2x =−µ1

r3
1
(x+π2r12)−

µ2

r3
2
(x−π1r12) (3.28)

ÿ+2Ωẋ−Ω
2y =−µ1

r3
1

y− µ2

r3
2

y (3.29)

z̈ =−µ1

r3
1

z− µ2

r3
2

z (3.30)

In the implementation of the N-Body propagator, the user is allowed to select the

Celestial objects to include its gravitational pull effect during the calculation of the
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motion of spacecraft. Due to integration error and other perturbations, this propagator

is not recommended for Earth-orbiting satellites, but the interplanetary trajectory

calculations are mostly performed using these equations.

3.3 Standard General Perturbations (SGP4)

The SGP4 model is used to predict the movements of objects in near earth orbits that

have a period of less than 225 minutes. This model takes into account various factors

that can affect the orbit of an object, including the shape of the Earth, atmospheric

drag, radiation, and the gravitational influence of other celestial bodies such as the sun

and moon. The SDP model, on the other hand, is used for objects in orbit with a period

of more than 225 minutes, or an altitude of 5,877.5 km in a circular orbit. Both models

are used to accurately predict the movements of objects in space and are important

tools in the fields of space exploration and satellite tracking. [32].

The model uses Two-Line Element (TLE) sets that are maintained and updated in the

space catalog.

Figure 3.4 : Structure of TLE Data

The SGP4 model is effective at predicting the movements of objects in near earth

orbit for a limited period of time, but its accuracy decreases over longer periods due

to an error of about 1 km at the epoch, which increases by about 1-3 km per day.

[32]. This means that it is important to regularly update the TLE data, which provides

information on the orbit of an object, in order to make more accurate predictions.

It’s worth noting that while TLE data includes information on the classical orbital
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elements, it is not suitable for use with other orbit propagators besides SGP4 and SDP4.

This is because the TLE data represents mean orbital elements that are calculated to fit

a set of observations, similar to how arithmetic and geometric means differ [33].

The working principle of the SGP4 model is given in Figure 3.5. The algorithm is

complex and can be found in [34]. The overview of steps is given below.

• Calculate constants from the input elements and determine the six classical orbit

elements.

• Add the secular effects of gravity on the mean motion, longitude of ascending node,

and argument of perigee.

• Add the secular effect of drag on longitude of ascending node.

• Add the deep-space secular effects and long-period resonance effects to all orbital

elements.

• Add the luni-solar periodic terms to the orbital elements and then long-term

periodics

axN = ecosw

ayN = esinw+
A3,0 sin i0
8k2αβ 2 (ecosw)

(
3+5θ

1+θ

)
Where

A3,0 =−J3R3
E k2 =

1
2

J2R2
E

• Obtain eccentric anomaly E by solving Kepler’s equation.

• Compute the quantities needed for short-term periodics.

eL = (a2
xN +a2

yN)
1/2

u = arctan
sin a

r

[
sin(E +w)−aY N + axN(esinE)

1+
√

1−e2
L

]
cos a

r

[
cos(E +w)−axN +

ayN(esinE)

1+
√

1−e2
L

]
r = a(1− cosE)

ṙ = µE
√

aesinE/r
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∆Ω, ∆r, ∆i and other quantities are found from equations that include the

gravitational zonal harmonic of the Earth.

• Add the short-term periodics to obtain the osculating quantities

uk = u+∆u

ik = i0 +∆i

ṙk = ṙ+∆ṙ

r ḟk = r ḟ +∆r ḟ

and similarly for other Kepler elements.

• Calculate unit orientation vectors by performing coordination transforms using new

inclination and longitude of ascending node.

U = M sinuk +N cosuk

V = M cosuk −N sinuk

where M and N are transformation matrices.

• Find new position and velocity from

r = rkU

ṙ = ṙkU +(r ḟ )kV (3.31)
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Figure 3.5 : Structural Organization of SGP4 [35].

In order to include the SGP4 propagator, open-source software was implemented from

Center for Space website [35]. The two-line element data is parsed, given to the

function as an input and the resulting position vectors are used to propagate orbit.

3.4 J2 and J4 Propagators

J2 and J4 propagation models are variations of the two-body propagator to include

some amount of perturbation effects. In general, when the duration of analysis is

short (e.g., couple of weeks), J2 Perturbation is used. On the other hand, if a long

term analysis is required then J4 Perturbation is preferred. These models produce

approximate solutions based upon mean Keplerian elements (see Mean Element

Theory 2.2.7) considering the effects of secular gravitational and drag perturbations.

The algorithm 9 shows the implementation of J2 propagator. The first time derivative

of the mean motion divided by two (ṅo) and the second time derivative divided by six

(n̈o) are used to include drag effects, but they can be set to 0 if there is no estimate for

these values available.
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Algorithm 9: J2 Propagation [5]

1 Use Algorithm 2 to obtain Classical Orbit Elements (ao,eo, io,Ωo,ωo,θo) from
the given state vector.

2 Calculate mean anomaly (Mo using true anomaly (θo) and eccentricity (eo) as
given in Table 2.3.

3 Compute the auxiliary variables.
po = ao(1− e2

o) no =
√

µ/a3
o η = noR2

EJ2/p2
o

4 Calculate the time derivatives of orbital elements.

∆a =−
2ao

3no
ṅo

∆e =−
2(1− eo)

3no
ṅo

∆Ω =−
3η

2
cos io

∆ω =
3η

4
(4−5sin2 io)

∆M =
3η

4

√
1− e2

o(2−3sin2 io)

5 Update for perturbations.
a = ao +∆a∆t
e = eo +∆e∆t
Ω = Ωo +∆Ω∆t [0,2π]
ω = ωo +∆ω∆t [0,2π]

M = Mo +∆Mo∆t +no∆t +
ṅo

2
∆t2 +

n̈o

6
∆t3 [0,2π]

6 Obtain true anomaly back from mean anomaly by solving Kepler’s equation to
get Eccentric Anomaly.

θ = 2tan−1
(√

1+e
1−e tan(E /2)

)
7 Obtain the state vector from the updated orbit elements using Algorithm 1

The J4 propagator uses Algorithm 9 with different equations to include up to fourth

zonal harmonic as given below.
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∆Ω =−
3η

2
cos io +

3ηJ2R2
E

32p2
o

cos io(12−4e2
o − (80+5e2

o)sin2 io

+
15J4R4

Encos i
32p4 (8+12e2 − (14+21e2)sin2 i)

∆ω =
3η

4
(4−5sin2 io)+

9ηJ2R2
E

384p2
o
(56e2

o +(760−36e2
o)sin2 iO − (890+45e2

o)sin4 iO

−
15J4R4

En
128p4 (64+72e2

o − (248+252e2
o)sin2 io +(196+189e2

o)sin4 io)

∆M =
3η

4

√
1− e2

o(2−3sin2 io)

3.5 High-Precision Numerical Orbital Propagator (HPOP)

The HPOP model takes into account a considerable number of force models and

perturbations that affect the motion of the satellite. The differential equations of

motion are integrated numerically to propagate the orbit. Numerical integration can be

performed with various techniques which will be discussed later in this chapter. Due to

the amount of force models used, highly accurate ephemerides can be generated with

this method, for any type of orbit.

3.5.1 Force Models

• Oblateness of the Earth

The Earth is shaped like an oblate spheroid, which means it is slightly flattened

at the poles and bulges at the equator. This bulge exerts a force on satellites that

pulls them back towards the equatorial plane if their orbit is not already aligned

with the equator. While this force is relatively small compared to the force of the

Earth’s gravity, it can still be easily detected and can affect the satellite’s orbit. As a

result, the line of nodes shifts a few degrees each day. In addition to this long-term

perturbation, other perturbations caused by the Earth’s non-spherical shape can

also affect the orbit of a satellite, particularly those in LEO. In 2-Body model, we

assumed the Earth was a perfect sphere with homogeneous mass distribution, and

used 3.3 to represent the acceleration on the satellite. Now, we will use the gradient
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of the corresponding gravity potential U as

R̈ = ∇U U = G
∫

ρ(s)d3s
|r− s|

(3.32)

Expanding the denominator in a series of Legendre polynomials as

1
|r− s|

=
1
r

∞

∑
n=0

(s
r

)n
Pnm(cosγ) cosγ =

r.s
rs

(3.33)

Where Pn(u) is the Legendre polynomial of degree n and order m. Then representing

the coordinates in longitude and geocentric latitude we have

x = r cosφ cosλ

y = r cosφ sinλ

z = r sinφ

We can express the gravity potential of the Earth as

U =
GM

r

∞

∑
n=0

n

∑
m=0

Rn

rn Pnm(sinφ)(Cnm cos(mλ )+Snm sin(mλ )) (3.34)

Where Cnm and Snm are coefficients obtained after using the addition theorem

of Legendre polynomials. The series of degree, order, and normalized numerical

coefficients (C and S) to the spherical harmonics define a gravity model. A file

consisting of these coefficients is used within the software to compute the oblateness

effects. Some of the available gravity models for Earth are listed in Table 3.1. Note

that some of the gravity models include tidal effects as well, which can be either

tide-free or zero-tide.
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Table 3.1 : Gravity Models.

Model Degree & Order Description Tide Model
EGM96 360-360 Earth Gravity Model 96.

Produced by a collabora-
tion of NASA GSFC, Na-
tional Imagery and Mapping
Agency (NIMA), and Ohio
State University.

Tide-Free

EGM2008 2159-2159 Updated version of EGM96
with slightly different GM
and radius properties.

Tide-Free

JGM-2 70-70 Joint Gravity Model v2. A
Geopotential model devel-
oped by GSFC and CNES.

Zero-Tide

JGM-3 70-70 Joint Gravity Model v3. A
Geopotential model devel-
oped by GSFC.

Zero-Tide

GGM03 360-360 Grace Gravity Model 3.
Based on flight data of
GRACE by University of
Texas.

Zero-Tide

• Third body attractions

Both the Sun and the Moon exert a gravitational force on the satellite which are most

prominent in geostationary orbits where the effects of the oblateness of Earth have

a similar order of magnitude. The direction of the resulting acceleration changes

depending on the alignment of the Earth, the Sun, and Moon. Other planets also

cause gravitational attraction, with Jupiter and Venus taking the lead, but their effect

is extremely small compared to luni-solar forces [13].

The lunar and solar forces can be modeled using the same way in n-body propagator.

R̈ = µ

(
R− r
|R− r|3

− R
|R|3

)
(3.35)

where R is the position of the perturbing body and r is the position f the satellite.

Since both the Sun and the Moon are much farther than most satellites, we can use

the following approximation when the satellite is pulled away from Earth

R̈ ≈ 2µ

R3 r
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If it is perpendicular to the co-linear line connecting the Earth and the perturbing

mass, then instead

R̈ ≈− µ

R3 r

Now all we have to do is find the coordinates of Sun and the Moon for the

given time. While there are ways to calculate them using old measurements

and assumptions, we can use the solar system ephemerides provided by the Jet

Propulsion Laboratory (JPL). The lunar coordinates rM are directly given, but we

have to use the following equation to calculate the geocentric position of the Sun rS

rS = r̂S − rEMB +
1

1+µ∗
rM (3.36)

Where r̂S is the position of the Sun relative to the solar barycenter, rEMB is its

position relative to the Earth-Moon barycenter, and µ∗ ≈ 81.3 is the ratio of the

masses of the Earth and the Moon. We can also expand upon this equation to include

effects of other celestial bodies. The general collective equation for acceleration on

the spacecraft caused by point mass k is given by

R̈ =− µ

r3 r+G
n

∑
k=1
k ̸= j

mk

(
rk − r
|rk − r|3

− rk

|rk|3

)
(3.37)

Where the term − µ

r3 r is the acceleration due to central body, rk−r
|rk−r|3 is the force of

the kth body on the spacecraft, and rk
|rk|3

is the force of the kth body on the central

body [4].

• Atmospheric Drag

Atmospheric particles colliding with the satellite result in a decrease in the kinetic

energy and angular momentum of the orbit, causing the semi-major axis and the

eccentricity to decrease. This has a major impact on the lifespan of a satellite, but

does not significantly alter its orbital plane because the main component of drag

is always directed opposite to the satellite’s velocity vector. Drag force decreases

linearly with atmospheric density, which shows an exponential decay as the altitude

increases. Thus, drag is mostly a concern for low-altitude satellites.

R̈ =−1
2

Cd
A
ms

ρv2
relev (3.38)
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where

vrel = v−ω × r+vw (3.39)

– ω = Angular velocity vector of the central body

– Cd = Drag coefficient

– A = Cross sectional area normal to vrel

– ρ = Atmospheric density

– ms = Mass of the spacecraft

– vw = Velocity of the local wind

– ev = Unit vector of the spacecraft relative velocity

The drag coefficient is related to various parameters such as the composition of

the atmosphere, the weight and temperature of particles, surface material of the

impinged area, etc. Hence, Cd has to be estimated as it is extremely difficult to have

a priori knowledge about it. For spherical bodies, a rough approximation of Cd = 2

can be used, and a value between 2.0 and 2.3 is assumed for convex shapes.

In terms of area-to-mass ratio, the attitude of the spacecraft has to be known to

determine this value at each step. If the satellite is always keeping its attitude, for

example if it’s always nadir-pointing, then this can be a constant value.

Another problematic parameter is the atmospheric density at the given altitude.

There are a number of different atmospheric models available with differences

around 20%. A brief comparison of the available models are given in Table 3.2.

According to some studies [36,37], the statistical accuracies of these models are

around 15% with no apparent improvement over the past decades.
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Table 3.2 : Atmosphere Models.

Model Description Range
1976 Standard A simple look-up table using 1976

standard atmosphere model.
86-1000 km

Harris-Priester Considers solar flux and diurnal
bulge.

0-1000 km

Jacchia 1971 Considers divisional and seasonal
variations of the atmospheric com-
position.

100-2500 km

Jacchia 1960-1970 Predecessors to the 1971 model. 90-2500 km
Jacchia 1977 An updated version of 1971, revised

in 1981 [38]. Requires a lot more
computational power but does not
significantly improve accuracy

100-2500 km

Jacchia-Roberts Uses analytical methods for increas-
ing the performance of 1971 model

>100 km

CIRA 1972 Uses numerical integration instead
of interpolating polynomials. Oth-
erwise similar to Jacchia 1971

>90 km

MSIS 1986 Empirical density model based on
satellite data by Hedin, replacing
CIRA [39]

90-1000 km

MSISE 1990 Updated version of MSIS 1986 0-1000 km
NRLMSISE 00 Developed by US Naval Research

Laboratory using data from satellites
0-1000 km

Another critical point in drag calculation is the prediction of Solar and Geomagnetic

Indices, as solar and geomagnetic activities significantly affect the atmosphere.

Orbit determination can be done using measurements, but for propagation the

predictions of these indices are required. The Center for Space Standards and

Innovation (CSSI) provides observations and predictions (from NOAA) for F10.7

flux and geomagnetic indices, which can be used with Jachhia Roberts and MSIS

models [40]. The short-term predictions of the solar flux is done considering the

solar activity caused by synodic solar rotation with a period of 27-days. However,

for mission planning, long-term effects caused by the 11-year solar cycle have to

be considered as well. The solar dynamo model by Schatten [41] is used to predict

average values in this case, and provided as a file by ISWA/GSFC [42].
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• Solar Radiation Pressure

Energetic particles from the sun impinge on the satellite, transferring their

impulse. The intensity of this radiation changes depending on solar activity, which

periodically peaks every 11 years. Eccentricity and longitude of perigee are mainly

affected from SRP. This effect is most prominent for satellites with large solar

panels.

The equation of acceleration due to SRP, assuming that the surface normal points

in the Sun’s direction, is simply given by [43]

R̈ = νPsCR
A
ms

rvs

r3
vs

r2
AU (3.40)

– ν = Eclipse factor. ν =
(
1− p

100

)
where p is the percent shadow.

– Ps = Solar radiation pressure at 1 AU (Ps ≈ 4.56 ·10−6Nm−2)

– CR = Radiation pressure coefficient and is related to reflectivity ε as CR = 1+ε

– rvs = Sun vector given as r− rs

– rAU = One astronomical unit.

– A = SRP area of spacecraft

– ms = Mass of the spacecraft

Note that this model is not sufficient for applications that require high-precision.

The complex structure of the satellite and the surface properties have to be

incorporated in this case, often using a finite element method.

• Relativistic Effects

The size of the effects of general relativity is given by the Schwarzschild radius

of Earth (2µ)/c2 ≈ 1 cm. If this level of accuracy is desired, then relativistic

effects should be considered [13]. The Newtonian equation of motion can be further

corrected by applying post-Newtonian terms which account for three contributions,

the Schwarzschild solution, geodesic precession, and Lense-Thirring precession.

R̈ =
µ

c2r3

((
4

µ

r
− v2

)
r+4(r ·v)v

)
+2(Ω×v)+2

µ

c2r3

(
3
r2 (r×v)(r ·J)+(v×J)

)
(3.41)
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Where

Ω =
3
2

vB/S ×

(
−µrB/S

c2r3
B/S

)
J = RI/F

B
[
0 0 2

5R2
BωB

]T
– c = Speed of light

– J = Angular momentum per unit mass of the central body

– rB/S = Position of the central body with respect to the Sun.

– vB/S = Velocity of the central body with respect to the Sun.

– RB = Mean equatorial radius of the central body.

– ωB = Spin rate

– RI/F
B = Fixed to inertial rotation matrix of the body.

• Others

There are several smaller perturbations in addition to those discussed so far,

typically causing accelerations in the order of 10−15 − 10−12km/s2. These are

mostly solid Earth tides, and the radiation pressure caused by Earth’s albedo.

Earth Radiation Pressure

The solar radiation that hits the surface of the Earth is reflected and scattered,

causing an optical albedo that exerts a slight pressure on the spacecraft. Similar to

the SRP, it only occurs during daytime, and varies according to weather conditions

as well as surface characteristics. The acceleration due to this phenomenon is

given by the following equation, where the albedo and emissivity can be expressed

considering J2 terms [44].

R̈ =
N

∑
j=1

CR

(
ν ja j cosθ

E
j +

1
4

ε j

)
Ps

A
m

cosθ
S
j

dA j

πr2
j
e j (3.42)

– dA j = Earth area elements

– ν j = Earth element shadow functions

– θ E
j = Angle of the Earth surface normal to the incident radiation
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– θ S
j = Angle of the satellite surface normal to the incident radiation

– ε = Emissivity

– a = Albedo

– e j = Unit vector pointing from the surface element to the spacecraft

Earth Tides

It is a well known fact that the gravitational attraction of third bodies, most notably

the Sun and the Moon, cause oceans to rise and fall, a phenomenon called ocean

tides. These luni-solar effects are not limited to the water which is quite malleable,

but they also cause elastic deformation of the Earth as it is a rigid body and not a

point mass. These are called solid tides, and cause the gravity field of the Earth to

vary with time.

An important concept that has to be known when talking about tides is the Love

number, which can be defined as the ratio of the tidal potential and the resulting

perturbed gravity potential. Tidal models include Love numbers of various degrees

to be used in the following equation that results in the time-dependent corrections

to the geopotential coefficients C and S.{
∆Cnm
∆Snm

}
= 4kn

(
GM
GME

)(
RE

s

)n+1
√

(n+2)(n−m)!3

(n+m)!3 Pnm(sinφ)

{
cos(mλ )
sin(mλ )

}
(3.43)

– kn = Love numbers of degree n

– λ = Earth-fixed longitude of the tide generating body

– φ = Earth-fixed latitude of the tide generating body

– s = Geocentric distance to the disturbing body

One interesting observation is that since tidal potential is disproportional to the cube

of the distance, the lunar tides are more prominent than the solar tides, about twice

as much. Another type of tides are pole tides, which are caused by the movement

of Earth’s poles (known as the Chandler wobble) contributing to the centrifugal

potential. This results in a small displacement of the Earth’s crust [45]. Finally, the

ocean tides are also one of the factors affecting satellite geodesy, albeit much less
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than solid tides. An ocean tide potential that can be expended in terms of spherical

harmonics can be used to express their effect by mapping them to the geopotential

coefficients as well.

Spacecraft Thrust

The propulsion systems used on the spacecraft, whether for attitude control or

maneuvering, directly affect the orbital motion. The thrust scale factor and duty

cycle are parameters related to the computation of acceleration. One thing to note

is that accelerations due to thrust result in discontinuities in the equations of motion,

so the numerical integration algorithm that’s used to calculate the motion how to be

restarted before and after the thrusters are used.

Figure 3.6 : Perturbations Order of Magnitudes [13].
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3.5.2 Integrators

To obtain the highly accurate satellite orbit calculations that are currently needed, it is

necessary to use numerical methods to solve the equation of motion [46]. There are

multiple different choices when it comes to numerical integration with each of them

having their strengths and weaknesses, which makes it impossible to have one method

that performs the best under every condition. Hence, multiple solvers were included in

the software that the user can choose from. In this chapter the fundamental principles

and properties of the implemented integrators are described and evaluated according

to the task at hand.

• Runge-Kutta

Runge-Kutta is a single step method that breaks the interval into several smaller

steps and calculates the estimates of the integration result at each step, h. In the

classical 4th order method, the increment function is given by the weighted mean of

four slopes, which are evaluations of the function f at different steps. There is no

need to compute the derivatives, hence the Runge-Kutta methods are fairly simple

to implement and can be applied to a large set of use-cases.

The generalized s-stage RK formulation is as follows. The estimation of the

integration result at state i is given by

ki = f (t + cih,y(t)+
i−1

∑
j=1

ai jk j) (3.44)

Where ai j contains a set of coefficients unique to the instance of RK at hand and

ci is the sum of the coefficients at row i. Using the stage calculation result and a

different set of coefficients, b j, the total integration step can be calculated by

y(t +h) = y(t)+
s

∑
j=1

b jk j (3.45)

This equation can be used twice, once for integration order of p and once for p+1,

to obtain estimates for different orders. The difference between these two solutions

can be used to estimate the error of truncation of the pth-order formula.

After estimating the error, the integration step can be adjusted to a size that is more

suitable for the desired level of accuracy. If the solution obtained in the step has
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lower accuracy than required, a smaller step-size has to be used to repeat this step,

which can be calculated by

h∗ = σh
α

ε

1/(m−1)
(3.46)

Where

– σ = Safety factor to avoid unnecessary iteration; defaults to 0.9.

– α = Desired accuracy.

– ε = Obtained accuracy.

– m = Truncation order of the series expansion.

The step size parameter may be increased as well, in this case the term m − 1

becomes m.

In some cases, it may be required to keep the maximum step size at a constant value.

Hence, the software uses a "maximum allowed step" parameter as input from user.

Although this type of step size control is able to adapt the current step size to the

characteristics of the differential equation, it doesn’t eliminate the need for the user

to provide an initial estimate for the starting step size.

• Adams-Bashford-Moulton

This is a Predictor-Corrector, which is a multi-step method that attains high

accuracy but requires memory as it uses past data points. The software employs

a 4th order Adams-Bashford predictor and Adams-Moulton corrector pair based on

Bate, Mueller and White [47].

The predictor uses the derivative at the current state as well as three previous states

to extrapolate the new state as follows

y∗ j
i+1 = y j

i +
h

24

[
55 f j

n −59 f j
n−1 +37 f j

n−2 −9 f j
n−3

]
(3.47)

Then the corrector is applied on this derivative information, using the information

at the original and two past states to yield a final state.

y j
i+1 = y j

i +
h

24

[
9 f ∗ j

n+1 +19 f j
n −5 f j

n−1 +1 f j
n−2

]
(3.48)
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The estimated accuracy of the solution is

ee =
19

270
|y∗ j

i+1 − y j
i+1| (3.49)

• Gauss-Jackson

This method is optimized for integrating systems of second order equations. Its

predictor component alone is typically more accurate than the predictors in other

methods, and it also includes a corrector. It has a strong ability to minimize the

impact of accumulated round-off error [47].

yi = h2
(
(∑ ÿi)

2 +
1
12

ÿi −
1

240
∂

2ÿi +
31

60480
∂

4ÿi −
289

36288
∂

6ÿi

)
(3.50)

Where

∂
iy(t) = ∂

i−1y(t +
h
2
)−∂

i−1y(t − h
2
)
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4. DEEP LEARNING BASED ORBIT PROPAGATOR

Classical trajectory prediction algorithms produce estimations by assuming that the

dynamic models of the system are known and, to make predictions simulations of these

dynamic models are used. In real world application, there are a number of factors

limiting the accuracy of the assumed dynamics models, such as orbit determination

errors caused by the constraints of the measuring instruments. Our knowledge of

the physical world is not sufficient enough to create perfect models as it is near

impossible to predict some perturbations precisely, such as solar activity which is only

an approximation based on statistical data, as well as the atmosphere models and the

area of the satellite that drag force affects, which also change depending on the attitude

model. All of these uncertainties cause errors during orbital propagation, which add

up at each step along with integration errors. To solve this problem, machine learning

methods can be used.

Machine learning (ML) is a field of artificial intelligence that involves using

mathematical models to enable computers to learn and improve automatically from

experience, without being specifically programmed to do so. ML models can perform

a specific task without direct instruction. Furthermore, models generalize the patterns

of the data and the patterns can be used to produce predictions. Today, a wide variety

of applications are available such as computer vision, self-driving cars, data mining,

email, malware filtering, search-engines. The new, advanced methods combined

with rapidly evolving computational capabilities, has created an environment where

aerospace problems can be solved.

The idea in this study is to improve the orbit prediction obtained by high-fidelity

numerical models such as HPOP using the estimation of error, so that the orbit is

not predicted from scratch but improved upon using past information of thousands of

Earth-orbiting objects.
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4.1 Background and Models

4.1.1 Long-Short Term Memory (LSTM) Structure

Differences of LSTM neural network structure from fully connected neural networks;

it can work much better if the data depends on time or previous data [48]. For example,

a network structure that classifies a sentence as a positive or negative comment, rather

than having to look at the words one by one, causes them to make much more accurate

predictions about the sentence. In maneuvering or vehicle type prediction, looking at

historical radar data and predicting a network with information about their order will

give much better results. [48]

Figure 4.1 : LSTM Structure

In Figure [48], example of a LSTM cell can be seen. The Xt data, which comes as

input from any time t, can produce 4 estimates in a cell.

Figure 4.2 : LSTM Structure

The main logic behind the LSTM is the cell state, which is reminiscent of the conveyor

belt and carries information between the states of the cell at different times. It is also
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the structure that establishes the relationship between the satellite’s historical data and

its future [48]

4.1.2 Forget Gate

The forget gate is the gateway that decides which information to forget by processing

the xt data from a previous cell at the time of t (this zero can be selected for the first

cell), with the ht−1 function. As a result, if the output from the sigmoid function is

zero, forget this information and 1 is to keep this information. [48]

sigmoid(z) =
1

1+ e−z (4.1)

ft = sigmoid(Wf [ht−1,xt ]+b f ) (4.2)

Figure 4.3 : Forget Gate of a LSTM Cell

4.1.3 Input Gate

It is the structure between the cell state and the output of the cell from the incoming

data. Decides which part of the new incoming data to keep [48].

it = sigmoid(Wi[ht−1,xt ]+bi) (4.3)

Ct = tanh(Wc[ht−1,xt ])+bc) (4.4)
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Figure 4.4 : Input Gate of a LSTM Cell

4.1.4 Output Gate

Finally, the cell state, the filtered input, and the output of the previous time step form

the output of the cell for that time step. This output will also be the input of the next

time step.

ot = sigmoid(Wi[ht−1,xt ]+bo) (4.5)

ht = ot ∗ tanh(Ct) (4.6)

Figure 4.5 : Output Gate of a LSTM Cell

4.1.5 Dense Layer

The data from the LSTM is often not the desired probability distribution, and in

addition to the LSTM structure, a layer of dense can be added to increase the capacity

of the model.

relu(x) =

{
0 x = 0,
x x>0

(4.7)
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h = relu(Wx+b) (4.8)

When the intermediate layers are activated with relu, by activating the last dense layer

with the softmax function, the probability distribution is obtained [48].

4.1.6 Softmax Function

The softmax function is used to convert the outputs from the model as scores to

meaningful probability estimates [48].

P(Y = k|X = xi) =
esk

∑ j es j (4.9)

s = f (xi;W ) (4.10)

The matrix resulting from the Softmax function will give us a probability distribution

with a sum of 1.

4.1.7 Loss Function

The loss function is used to measure the accuracy of the model. The loss function

indicator of how far the estimation really is, in other words scores from the model.

The loss score of the model close to zero means that model may be making good

predictions.

4.1.8 Categorical Cross Entropy Function

Categorical cross entropy function is used when classifying multiple elements. [48]

Loss =−
C

∑
i

tilog( f (s)i) (4.11)

f (s)i is the output of the softmax function.

4.1.9 Mean Square Error

Mean square error (MSE) is used to measure the error of the regression problems.

While making predictions on satellite state, error is calculated as follows. The more

error there is, the more mean square error punishes as loss [48].

MSE =
1
n

Σ
n
i=1(ypredict − yreal)

2 (4.12)
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4.1.10 Optimization

Initially, a randomly selected W matrix produces incorrect estimates and yields a high

numerical result of the loss function. Finding a W matrix that will reduce the loss

function (produce better estimates) is possible with optimization.

4.1.11 Stochastic Gradient Decent

Stochastic Gradient Decent S is an iterative process for optimizing an objective

function with suitable smoothness properties.

Algorithm 10: Stochastic Gradient Decent Algorithm
Result: Local Minimum of The Loss Function

1 for i = 1,2,3,...n do
2 w = w−ν∆Qi(w)
3 end

SGD and their variations are often used to train neural networks. In this project, SGD,

ADAM and Adagrad optimizers are used.

4.2 Dataset

The main goal of the model is to reduce the discrepancy between the trajectory

estimations and the grand truth. Therefore, we use real data from satellites to train

the model. The huge database of historical TLE files (nearly 10GB) were used along

with SGP4 propagator, and orbits were constructed by constantly updating the TLEs,

on average once 12 hours, to achieve as much accuracy as possible. These data are

then predicted with the HPOP for the exact time steps. The difference that starts to

emerge between these two data is the target that the model tries to minimize.

The Dataset 1: HPOP(X ,Y,Z,Vx,Vy,Vz) (4.13)

The Dataset 2: Measurement(X ,Y,Z,Vx,Vy,Vz) (4.14)

The Objective: min MSE(HPOP−Measurement) (4.15)

Satellite data orbiting in different low earth orbits were used to train the models.

Starlink, ISS and many other freely available orbit data were used.
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4.3 Model Architecture

There are many types of deep neural network architectures that can be used for time

series analysis, including Recurrent Neural Networks (RNNs) and Long Short-Term

Memory Networks (LSTMs). Convolutional Neural Networks (CNNs) are commonly

used for spatial analysis of high-dimensional data such as images, but they can also be

applied to one-dimensional data with long-term dependencies. Four different types of

RNNs are implemented in this case, with the first two models being encoder-decoder

architectures, which connect the encoder output directly to the decoder input at the

latent space."

Figure 4.6 : LSTM Connection Architecture

The parameters of the prediction model are adjusted based on the results of

simulations. It was found that adding more layers to the model does not necessarily
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improve accuracy, but it does increase computation time. On another note, increasing

the number of neurons in a single layer may improve the overall model accuracy.

Figure 4.7 : Model Architecture

The activation function at the last layers of the prediction part is a linear function. A

dropout method was used to prevent over-fitting.
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Figure 4.8 : Model Parameters

The model parameters can be seen at Figure 4.8

4.3.1 Implementation

Keras is a library written in python programming language that allows users to create

and train deep learning models very quickly. All of the methods described above have

been implemented in the Keras library. Although Keras is easy to use, it is not flexible

enough to write complex layers. In order to develop better models, Tensorflow and

Pytorch libraries are implemented.

4.4 Results

In this section 4.2, the results of trajectory estimation using the deep learning method

are discussed. As mentioned in the Section 4.2, the main objective is to keep difference

between model predictions and real data as low as possible.

The Figures 4.9, 4.10, 4.11 show the training process of various models.
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Figure 4.9 : Training: Epoch and Loss

The graphs show the normalized values, values are normalized 103 and 102 for position

and velocity vectors, respectively. As can be seen in the graphs after about 1000 steps

of training, the error is less than 10−3 which corresponds to several meters.

Figure 4.10 : Training: Epoch and Loss

Figure 4.10 is the zoomed version of Figure 4.9. As can be seen in the figure, all loss

functions were converged to 5 · 10−3 At this point, tests were run to find out which

model worked better. In the Figure 4.11, it can be observed that the green model gives

better results in the validation conditions.

Figure 4.11 : Validation: Epoch and Loss

Also after training for a long time significantly decreases validation loss, on the other

hand, training loss stays converged. The best performing model is deployed to the

software framework to increase accuracy of the trajectory prediction.
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5. SIMULATION ENVIRONMENT

In order to properly plan certain studies, it is important for engineers to be familiar

with not just propagation, the most common type of orbit analysis, but also other

analytical tools such as orbit types, maneuvers, communication and power analyses.

This also includes understanding the concepts of reconnaissance and surveillance from

space. Moreover, there are several specific types of orbits that can be useful for

specialized purposes, such as sun-synchronous, which maintain a constant angle with

the Sun, frozen orbits, which fix one or more orbital elements against perturbations,

and repeat-groundtrack satellites, which provide periodic coverage over a particular

ground location [49]. While these types of analyses provide a good starting point

for mission planning, it is important to remember that more detailed studies will be

necessary in order to fully understand the effects of perturbations on the orbit for any

given mission [5]. The simulation environment is intended to aid during the mission

planning phase, by providing the tools for engineers to determine critical parameters

such as how much fuel to keep on-board, how much solar power can be generated, and

whether the specified orbit is sufficient for providing a communication window with

points of interest.

5.1 Orbit Tool

The orbit tool provides the framework to quickly create mission-specific orbits such as

sun-synchronous, geosynchronous, repeat-ground track, and Molniya orbits.

5.1.1 Sun Synchronous Orbits

Sun synchronous orbits (SSO) allow a satellite to pass over a specific location on

the surface of Earth’s at the same local solar time during each revolution, by taking

advantage of the oblateness of Earth. This can be achieved by tilting the orbit plane

slightly relative to the equatorial plane of the Earth and choosing an appropriate orbital
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period. SSOs are often used for Earth observation satellites because they allow for

consistent lighting conditions on the ground, making it easier to observe and compare

features over time. Additionally, SSOs can also be useful for communications satellites

because they allow for predictable coverage patterns.

Figure 5.1 : Sun-Sycnhronous Orbit

In an SSO, the orbital plane rotates in alignment with the daily rotation of Earth around

the Sun, which is equivalent to a rotation of 360◦ every 365.26 days. The advance rate

of the ascending node is then

Ω̇ =
2π

365.26×24×3600
= 1.991063853×10−7rad/sec

The change in right ascension due to oblateness is given by

Ω̇ =−
[

3
2

√
µEJ2R2

E

(1− e2)a7/2

]
cos i (5.1)

SSOs are usually defined by the local time of the ascending node (LTAN) (e.g., 10.30

a.m. orbit). An alternative is local time of descending node, which is equal to LTAN

+ 180◦. The LTAN parameter can be converted into longitude of ascending node, λasc,

which can be converted to RAAN as shown in Table 2.3.

λasc = LTAN − tepoch (5.2)

Hence, in orbit tool, either altitude or inclination can be specified, along with Node

Definition (LTAN or LTDN) and the rest of the orbital parameters are computed

according to Equations 5.1 and 5.2.
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5.1.2 Critically-Inclined Orbits

In critically inclined orbits, perigee is fixed at a specific latitude and does not change

over time. The rate of change of argument of perigee due to J2 term is given by

ω̇ =−
[

3
2

√
µEJ2R2

E

(1− e2)a7/2

]
(
5
2

sin2 i−2) (5.3)

When ω̇ = 0, the line of apsides remains stationary. The two inclination values that

satisfy this condition are 63.4◦ and 116.6◦, with the latter resulting in a retrograde

orbit.

The software requires four parameters to create this kind of an orbit, the direction

(posigrade or retrograde) to determine inclination, apogee and perigee altitudes, and

longitude of the ascending node.

Molniya (lightning) orbits are type of critically inclined orbits, characterized by a

high eccentricity. The apogee of these orbits are located in the Northern Hemisphere,

so the satellite spends a significant amount of time at high latitudes. The Molniya

telecommunications satellites are inserted into orbits with inclination of 63.4◦ and a

period of 12 hours, which corresponds to a very large semi-major axis of 53,000 km.

The half-day orbit creates repeating ground tracks, which are detailed below. The

critical inclination of the orbit means that the argument of perigee remains constant

at a preferred value (which is usually around 270◦), maintaining the desired viewing

geometry. However, the luni-solar effects and zonal harmonics of Earth gravity cause

the argument of perigee to change ever-so-slightly, which is usually corrected through

station-keeping maneuvers [16].

It is possible to create a Molniya orbit using the Orbit Tool with just three parameters,

perigee altitude, argument of perigee, and longitude of apogee. The last parameter is

useful because it tells over which longitude on Earth will the satellite spend most of

its time. It can be found by setting Ω in such a way that after half a revolution, the

sub-satellite point shall be at the desired longitude.

73



5.1.3 Geosynchronous Orbits

A satellite in a Geosynchronous orbit appears to remain stationary relative to a

particular location on the surface of the planet. This is achieved by having an altitude

of approximately 35,786 kilometers, which corresponds to an orbital period of one

sidereal day. Geosynchronous orbits are often used for communications satellites

because they allow for continuous coverage of a particular region. They are also useful

for weather forecasting and military surveillance. However, geosynchronous orbits are

affected by other perturbations as well, which can cause the satellite’s position to drift

over time.

Setting the eccentricity to 0, and altitude to 35,786 km, we only require two inputs

from the user, inclination and the sub-satellite point (same as the longitude of the

ascending node, in True of Date coordinate system), which is the key parameter in

geosynchronous orbits.

5.1.4 Repeat Ground-Track Orbits

Orbits that periodically repeat their ground trace can be useful for applications that

require identical viewing conditions at different times in order to monitor changes.

The ground trace, or the path that the spacecraft follows over the surface of the planet,

can be designed to repeat every day or to alternate between two different paths before

repeating. This type of orbit can be useful for tasks such as monitoring crops or

studying atmospheric conditions.

The key properties of these orbits are revolutions to repeat, kr2r, and days to repeat,

kd2r. The user inputs these two parameters, inclination, eccentricity, and the longitude

of the first ascending node, and Algorithm 11 is used to find the repeat ground-track

orbit solution. Alternative to days to repeat, the average altitude can be given as well.
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Algorithm 11: Repeat Ground Track Finding Algorithm [5]
1 Initialize variables

krevpday =
kr2r
kd2r

n = krevpdayωE

a =
(

µ

(
1
n

2
))1/3

2 Loop until a is fixed at a value.
p = a(1− e2)

Ω̇ =−

3nJ2

2

(
RE

p

)2
cos i

ω̇ =

3nJ2

2

(
RE

p

)2
(4−5sin2 i)

Ṁ0 =

3nJ2

2

(
RE

p

)2
√1− e2(2−3sin2 i)

n = krevpday(ωE − Ω̇)− (Ṁ0 + ω̇)

a =
(

µ

(
1
n

2
))1/3

e =
a− rp

a

5.1.5 Orbital Maneuvers

Most of the satellites have to perform maneuvers in order to achieve their desired orbit

after launch, to maintain their orbits, or to transfer to a completely different orbit.

Even CubeSats can maneuver due to the developments in propulsion systems. The

software at the moment only has the capability to perform impulse maneuvers, but the

framework allows implementation of more advanced orbital maneuvers in the future,

such as designing interplanetary trajectories, orbital rendezvous, and phasing.

An impulse maneuver can alter the shape of an orbit as well as the orbital plane.

Co-planar maneuvers involve changes in both speed (v f − vi) and flight-path angle

(∆β = β2 − β1) to create a new, co-planar trajectory. Plane change maneuvers, on

the other hand, alter the orbital plane and do not involve changes in either speed or

flight-path angle at the impulse point [15].

75



An impulsive co-planar maneuver is shown in Figure 5.2. It is apparent that the

velocity change for such a maneuver can be found from

∆V =
√

v2
i + v2

f −2viv f cos∆β (5.4)

Figure 5.2 : Impulsive Coplanar Maneuver

For a plane change without a change in velocity, we can use

∆V = 2vi sin
δ

2
(5.5)

Where δ is the angle of plane change. This can be used for both inclination and RAAN

changes, as shown in Figure 5.3.

Figure 5.3 : Plane Change Maneuver [15].

If both inclination i and Ω are going to be changed simultaneously, then the resulting

plane change angle can be found from

cosδ = cos ii cos i f + sin ii sin i f cos(Ω f −Ωi) (5.6)
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If a combined maneuver (both velocity and plane change) is desired, then the general

equation is given by

∆V =
√

v2
i + v2

f −2viv f [cos∆β − cosβ f cosβi(1− cosδ )] (5.7)

5.1.6 Lambert’s Problem

Instead of determining an orbit by using a state vector at a specific time, we can find

orbital elements by using position vectors at two different times. It is a boundary-value

problem that requires a solution that meets conditions at two different points, and

usually does not have a closed-form solution, requiring an iterative numerical solution

process instead [15].

The known quantities are the initial and final position vectors, r1 and r2, and the time

between them, ∆t = (t2− t1). The quantities to be found are the orbital elements of

the trajectory passing through points 1 and 2 with a given ∆t. Note that the direction

should be given as well.

Be aware that Lambert has a limitation. When the two position vectors are

near-parallel, the transfer plane becomes not "well defined", and the resulting ∆V cost

may be higher than normal.

Figure 5.4 : Lambert’s Problem [12].
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An analytic approach can be used to solve the Lambert’s problem. We will use the

following function.

√
µ∆t =

[
y(z)
C(z)

]3/2

S(z)+A
√

y(z) (5.8)

Where C(z) and S(z) are Stumpff functions given in Equations 3.15 and 3.16, and

y(z) = |r1|+ |r2|+A
zS(z)−1√

C(z)
(5.9)

We will also make use of Lagrange coefficients given by

f = 1−
y(z)
|r1|

(5.10)

g = A

√
y(z)
µ

(5.11)

ġ = 1−
y(z)
|r2|

(5.12)

The complete algorithm to solve Lambert’s problem is detailed in Algorithm 12.
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Algorithm 12: Solution of Lambert’s Problem

1 Find the change in true anomaly, ∆θ .
∆θ =

cos−1 r1 · r2

|r1||r2|
if prograde and (r1 × r2)z ≥ 0 OR retrograde and (r1 × r2)z < 0

2π − cos−1 r1 · r2

|r1||r2|
if prograde and (r1 × r2)z < 0 OR retrograde and (r1 × r2)z ≥ 0

2 Compute the auxiliary parameter A

A = sin∆θ

√
|r1||r2|

1− cos∆θ

3 Solve Equation 5.8 for z iteratively using Newton’s method.

zi+1 = zi −
F(Zi)

F ′(zi)

F(z) =

[
y(z)
C(z)

]3/2

S(z)+A
√

y(z)−√
µ∆t

F ′(z) =

[
y(z)
C(z)

]3/2(
1
2z

[
C(z)−

3S(z)
2C(z)

]
+

3S(z)2

4C(z)

)
+

A
8

[
3

S(z)
C(z)

√
y(z)+A

√
C(z)
y(z)

]
(z ̸= 0)

√
2

40
y(0)3/2 +

A
8

[√
y(0)+A

√
1

2y(0)

]
(z = 0)

4 Find y after obtaining value of z using Equation 5.9.
5 Compute Lagrange functions using Equations 5.10 to 5.12
6 Velocities can be obtained by

v1 =
1
g
(r2 − f r1)

v2 =
1
g
(ġr2 − r1)

7 Obtain orbital elements using state vectors (r1, v1) and (r2, v2) by Algorithm 1.

5.2 Communication Analysis

The software has the capability to determine the time intervals where a satellite "sees"

a ground station or another satellite. Access between objects can be restricted by the

user in order to specify what is considered a valid access.

A ground station can be defined by supplying the following parameters;

• Coordinates. It can either be Cartesian (body-fixed, ITRF for Earth), Spherical, or

Geodetic. The following transformations are performed according to the input type.
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Geodetic:

C =
RE√

1− e2 sinψ2
(5.13)

S =C(1− e2) (5.14)

rIT RF =

(C+h)cosφ cosλ

(C+h)cosφ sinλ

(S+h)sinφ

 (5.15)

Spherical:

rIT RF =

Rcosφ cosλ

Rcosφ sinλ

Rsinφ

 (5.16)

Where R is the radius, λ is longitude, and φ is latitude.

• Altitude. The height above sea level. This data is automatically derived from the

Earth terrain data, but can be overridden.

• Constraints. Either one or a combination of the following; minimum/maximum

elevation angle, minimum/maximum azimuth angle, minimum/maximum range.

5.2.1 Pass Predictions

In order to calculate the pass start and end times, the satellite is first propagated using

the chosen orbital propagator. At each time step, the immediate ephemeris of the

satellite is used to check whether there is a Line of Sight (LOS) with the chosen ground

station, and if the constraints are satisfied. Algorithm 13 defines the steps to calculate

the angles in topocentric horizon system.
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Figure 5.5 : Topocentric Horizon Coordinate System [33].

Algorithm 13: Pass Determination [5]

1 Compute geocentric equatorial position vector of the ground station, rGS using
equation 5.15

2 Calculate the relative position vector of the satellite
ρ = rS − rGS

3 Perform the transformation Ry(90−φ)Rz(λ ) to topocentric horizon system.
4 The elevation angle, α can be found from

α = sin−1 ρz

|ρ|
5 The azimuth angle can be found using the following equations and adjusting

the quadrant

sinA =
ρx√

ρ2
x +ρ2

y

cosA =
−ρy√
ρ2

x +ρ2
y

Alternatively, the atan2 function can simply be used to obtain azimuth angle.

A = atan2(−ρy,ρx)+π

After range, and elevation and azimuth angles are found for a step, the software simply

compares if the elevation is positive, and that all the values are within limits.

In order to save computational effort and time, not every time step is checked. If both

the elevation angle and its slope is negative, meaning that the satellite is getting away,

time is forwarded 75% of orbital period. If the slope is positive, it is forwarded a couple

of minutes or seconds depending on the current elevation angle. In terms of satellite to
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satellite visibility, a different approach is used. Checking visibilities at every time step

during numerical propagation can become a highly costly operation as the number of

satellites increase, and the accuracy will be bound by the step size δ t in this approach.

Hence, an efficient and precise method that works in all kinds of orbits were adapted

from Alfano, Negron, and Moore [50].

Consider the geometry of the visibility function in Figure 5.6. Satellites are either

rising or setting in relation to each other, as long as the position vectors reside in the

Earth-tangent plane. If a vector R, which originates from the center of the Earth and is

perpendicular to the line connecting the two satellites, was shorter than or equal to the

Earth’s radius, it would be clear that the satellites would not be able to communicate

directly with each other. However, due to atmospheric interference, it would be more

realistic to assume that the magnitude of S is slightly larger than the Earth’s radius [51].

Let us introduce a "bias factor", b, that counts for the thickness of the atmosphere. By

default, 100m was used.

Figure 5.6 : Satellite to Satellite Visibility Geometry

The angle between satellite positions can be compared with the angles formed from

the LOS tangent to the spherical surface (RE + b) to evaluate visibility. Hence, the

visibility function between two satellites whose positions are given as r1 and r2 in the

Earth-centered inertial system can then be defined as;

φ(t) = cos−1

(
RE +b
|r1|

)
+ cos−1

(
RE +b
|r2|

)
− cos−1 r1 · r2

|r1||r2|
(5.17)
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The results can be interpreted as:

φ(t)


> 0 visible
0 rise or set
< 0 no visibility

In order to correct for the oblateness of the Earth, the k̂ components of the position

vectors r1 and r2 are rescaled by 1/
√

1− e2
E .

The parabolic blending method is then used to find the rise and set times as described

in the work of Alfano, Negron, and Moore [50].

5.2.2 Field of View

Satellites used for communications, weather, navigation, or surveillance require Earth

surface coverage. Hence, the software has the capability to calculate the coverage, or

field of view, of satellites.

A satellite’s coverage of a particular area at a given moment is usually determined by a

cone-shaped field of view that intersects the Earth’s surface and creates a circular area

of coverage centered on the point directly below the satellite. The satellite’s field of

view is limited by the horizon, with higher minimum ground elevation angles being

used to account for atmospheric conditions or obstructions on the ground. In some

cases, the satellite’s sensor may also have its own limitations in terms of its angular

field of view or the distance from the satellite to the area being observed, which can

further restrict the satellite’s visibility. These factors can be described using equations

that relate the satellite’s coverage parameters [16].
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Figure 5.7 : Satellite Coverage Geometry [49].

The parameters indicated in Figure 5.7 are described below.

• ρ = Satellite field-of-view angle

• λ0 = Earth central angle of coverage.

• ε = Ground elevation angle

sinρ = cosλ0 =
RE

RE +H
(5.18)

tanε =
cosλ0 − [RE/(RE +H)]

sinλ0
(5.19)

In units of distance, assuming r is range in kilometers and λ0 in radians, we can use

the approximation

r = λ0RE (5.20)

For increased precision, RE at the precise latitude can be used.

The distance to the horizon, or maximum slant range, is given by

D2
max = R2

E +(RE +H)2 −2RE(RE +H)cosλ0 (5.21)
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A correction factor should be used to take the oblateness of Earth into account to

increase precision, which has been explained in works by Liu [52] and Collins [53],

[49].

5.2.3 Link Analysis

One of the key points of spacecraft mission design is the calculation of the link budget

for communication analysis. The software provides the tools to perform preliminary

downlink/uplink link budget calculations. There are several inputs to be considered.

• Orbit Parameters

The slant range is calculated as shown in Figure 5.8, which is used for path

and atmospheric loss calculations. The mean altitude is calculated from orbital

elements. Frequency is given as an input by the operator.

Figure 5.8 : Satellite Slant Range.

The slant range is given by

S = RE

[√
r2/Re2 − cos2 δ − sinδ

]
(5.22)

Where r is the mean orbit radius, and δ is minimum elevation angle.

Path loss is given by:

Ls = 22.0+20log(S/λ ) (5.23)

Where λ is the wavelength found by c/ f (c is the speed of light, f is frequency).
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• Transmitters

Input values are the transmitter power, Pt , and estimated transmitter line loss, Ll .

These losses are usually very small, and include the cable loss based on cable

length, connector losses, antenna mismatch losses, and filter insertion losses.

Total power delivered to transmitter is computed using

P = Pt −Ll (5.24)

• Receivers

User inputs the estimated receiver line losses, Llr, which usually involves

multiplying the cable lengths by the cable loss/meter value provided by the

manufacturer.

Transmission line coefficient is found using

α = 10(Llr/10) (5.25)

The system noise temperature, Ts, is calculated as follows.

Ts = Taα +T0(1−α)+TLNA +(Tcr/(GLNA/(10(Lc/10)))) (5.26)

Where

– Ta = Sky temperature

– T0 = Ground station feedline temperature OR spacecraft temperature

– TLNA = LNA Temperature

– Tcr = Communications Receiver Front End Temperature

– GLNA = LNA Gain

– Lc = Cable loss from LNA to communications receiver

In a ground station, the temperature of the sky as measured by the antenna includes

both noise from the colder sky and noise that is generated on the ground near the

station, which is typically caused by computers in the area that are within radio

range of the ground station [54].
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The sky temperature is calculated as follows

TskyMin = TgalacticMin +TnoiseSource (5.27)

TskyMax = TgalacticMax +TnoiseSource (5.28)

The coldest and warmest galactic noise temperatures

TgalacticMin = 80(( f/1000)/0.25)−2.75 +2.7 (5.29)

TgalacticMax = 380(( f/1000)/0.25)−2.75 +2.7 (5.30)

Where f is the receiver frequency in MHz.

Noise source effective temperature is found from

TnoiseSource = 10((No+198.6−10log(B∗1000))/10) (5.31)

Where No is the estimated or measured noise level, and B is receiver bandwidth in

KHz, which is given by

B =
Rb

SE ∗FEC
(1+ r) (5.32)

Where

– Rb = Bit rate

– SE = Spectral efficiency

– FEC = Forward Error Correction factor

– r = Filter roll-off factor

The values from ITU recommendations can be used to obtain noise levels [55].

• Antenna Gain

Gain of the antenna and beamwidth are the main parameters used here. The user

has to input the antenna type to use as the equations change accordingly. The

available antenna types and their equations are given in Table 5.1. Empty values

mean information from the manufacturer should be used.
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Table 5.1 : Antenna Options.

Type Inputs Gain Beamwidth
Yagi Boom length (λb) Table at [56],

depending on
λb

√
40000
10G/10

Helix Circumference
(c)
Turn spacing (s)
Turns (n)

10 log(15c2sn)
1

c
√

sn

Parabolic Reflector Diameter (d)
Aperture
Efficiency (AE)

20.4+
20logd +
20log(AE/1000)+
10log f

21
(d/1000) f

Monopole Gain, Beamwidth - -
Dipole Gain, Beamwidth - -

Canned turnstile Gain, Beamwidth - -
Quadrifilar Helix Gain, Beamwidth - -

Patch Gain, Beamwidth Manufacturer -

• Antenna Pointing and Polarization Losses

This section addresses the loss values caused by pointing of antenna and spacecraft

errors. The values we are considering may not be precise because they can be

influenced by the performance of the spacecraft’s attitude determination and control

systems and the ground station’s ability to accurately track the satellite. We are

examining how the antenna’s directivity or gain changes as we move away from

the direction in which it has the highest gain. It is common to refer to the decrease

in gain as the antenna is rotated and viewed from a distance as the antenna’s "gain

roll-off."

Equation for pointing loss is

ξ = 2θe
79.76

δ
(5.33)

Lp =−10log
(

3282.81
sinξ 2

ξ 2

)
(5.34)

Where θe is the estimated pointing error and δ is the beamwidth.
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And for polarization loss

Lpol = 0.5

(
1+

(1− r2
1)(1− r2

2)cos(2θp)+4r1r2

(1+ r2
1)(1+ r2

2)

)
(5.35)

Where r1 and r2 are the axial ratios of TX and RX antennas, respectively, and θp is

the polarization angle between antennas.

The axial ratio is a measure of the directional characteristics of an antenna, and

is defined as the ratio of emitted (or received) power when the antenna is aligned

with major axis to when it is aligned with the minor axis. It is a measure of the

directional characteristics of an antenna.

• Atmospheric and Ionospheric Losses

Loss due to atmosphere depends mostly on elevation angle. The look-up table from

[57] is used to obtain losses due atmospheric absorption, which goes from 10.2 dB

at 0 degrees to 0 dB at 90 degrees.

In case of ionosphere, while the elevation angle of a satellite can have an impact on

the signal absorption, this relationship is almost insignificant. This value can either

be interpolated from the look-up table (usually lower than 1 dB), or manually given

by the operator.

The rain attenuation can be obtained from the tabulated values as shown in Figure

5.9.
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Figure 5.9 : Rain Attenuation Values [49].

• Modulation and Encoding

Operator can select from the available options or manually enter the required Eb/No

by looking at Figure 5.10 to attain desired BER for chosen modulation and coding

scheme. Finally, the implementation losses are given (default 1 dB).

Table 5.2 : Modulation Options.

Modulation Coding BER Required
Eb/No (dB)

AFSK/FM None 1.0E −4 21.0
G3RUH FSK None 1.0E −4 16.7

Non-Coherent FSK None 1.0E −4 13.4
Coherent FSK None 1.0E −4 10.5

GMSK None 1.0E −5 9.6
QPSK None 1.0E −6 10.5
BPSK None 1.0E −6 10.5
BPSK Convolutional

R = 1/2, K = 7
1.0E −6 4.8

BPSK Conv. R = 1/2,
K = 7 & R.S.

(255,223)

1.0E −6 2.5

BPSK Turbo Code
(Parallel w.
Interleaver)

1.0E −6 0.75
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Figure 5.10 : BER as a function of Eb/No [49]

Finally, the link budget is calculated as follows;

RIP = P+Gt −Lscp −Lpol −Ls −Latm −Lion −Lrain (5.36)

G/T = Gr −Llr −10logTs (5.37)

S/No = RIP−Lp −228.60+G/T (5.38)

Eb/No = S/No −10logR (5.39)

Where

• RIP = Received Isotropic Power (dbW).

• P = Transmitter power delivered to antenna (Eq 5.24).

• Gt = Transmitter antenna gain (Table 5.1).

• Lscp = Spacecraft antenna pointing loss (Eq 5.34).

• Lpol = Polarization loss (Eq 5.35).

• Ls = Path (Space) loss (Eq 5.23).
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• Latm = Atmospheric loss.

• Lion = Ionospheric loss.

• Lrain = Rain attenuation.

• G/T = Figure of merit (dB/K).

• Gr = Received antenna gain (Table 5.1).

• Llr = Receiver line losses (input).

• Ts = System noise temperature (Eq 5.26).

• S/No = Signal-to-Noise Power Density (dBHz).

• Lp = Ground antenna pointing loss (Eq 5.34).

• R = Data rate in bps (input).

5.3 Power Analysis

Several factors affect the power generation capabilities of the solar array of spacecraft.

These include the orbit and attitude, position of the sun, solar and lunar eclipses, and

layout of the panels [58].

The following equation is used to calculate power generation of solar arrays

P = S×η × Id ×Ld ×AE (5.40)

Where

• P = Power generated.

• S = Solar constant flux density (1367W/m2 [49]).

• η = Solar cell efficiency.

• Id = Inherent degradation.

• Ld = Lifetime degradation.
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• AE = Effective panel area.

A rotation matrix that uses the attitude information is used to rotate the spacecraft

model. The solar light that impinges on each surface element is then calculated based

on the satellite’s position and orientation. The effective area (i.e., area that sees the

Sun) of each illuminated panel is then found, and equation 5.40 is used at every

step of the propagation to determine the power produced by solar panels. Summing

the individual panel powers yield the total generated power, which can be compared

with the orbit-averaged total power to see how the total power generation capabilities

change over long durations [59].

The software currently supports only one attitude model which allows only a fixed

orientation. In the future, the software will support customizable attitude models that

can be used to more accurately compute power generation.

5.3.1 Eclipse Periods

In mission planning, it is important to determine the intervals where the satellite does

not receive any sunlight, for both force model computations regarding SRP and for

determining the times when there won’t be any power generation. Additionally, the

attitude model of the spacecraft can be changed during eclipse times to save power.

Hence, the capability to determine the times of eclipses is included in the software.

The vector RS and r are the positions of the Sun and the satellite with respect to the

center of the Earth, respectively. The satellite position vector can be decomposed in

components parallel (d) and perpendicular (a) to the direction towards Sun. The angle

ψ is the angle between the directions towards the Sun and the satellite.

ψ = cos−1 RS · r
|R||r|

(5.41)

a = r sinψ (5.42)

Then both conditions below have to be satisfied for an eclipse to occur

• Satellite is on the night-side of Earth (ψ > 90)

• Satellite hides behind Earth (a < RE)
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Figure 5.11 : Eclipse Situation [49].

The shadow function is defined as

S(θ) = R2
E(1+ ecosθ)2 + p2(cosψ)2 − p2 (5.43)

Where θ is the true anomaly of orbit and p is the semi-latus rectum (p = a(1− e2)).

Table 5.3 describes how to evaluate the result of the shadow function.

Table 5.3 : Shadow Function Results.

S < 0 S = 0 S > 0
ψ < 90◦ In sunlight In sunlight In sunlight
ψ > 90◦ In sunlight Entering/Leaving shadow cone In shadow cone
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6. SOFTWARE ARCHITECTURE AND DEVELOPMENT

The mathematical specifications given so far were implemented in the Orbiter software

[60]. The software is written in a combination of multiple programming languages

and frameworks with an aim to achieve cross platform as well as web support. The

software can be installed as a stand-alone program on any kind of operating system,

or be used online through a website granted it is being served on a server. In order to

achieve this, the Electron framework using JavaScript was used [61]. The graphical

user interface (GUI) was created using web design tools such as HTML, CSS, SCSS,

and JavaScript. The Cesium open-source module was used in the modelling of the

Earth and visualization of the assets [62]. In the back-end, all calculations regarding

orbital dynamics were coded in C++ due to several considerations.

• Speed: C++ is a compiled language, and a fast one at that, which means it can

execute faster than interpreted languages like Python. This can be particularly

important for computationally intensive tasks like.

• Control: C++ gives a lot of control over how the code runs, including how memory

is allocated and used. This is helpful for optimizing the performance of the code.

• Libraries: There are many libraries available for C++ that can be helpful for

scientific computing tasks. For example, the Eigen library includes a number of

useful math functions and algorithms that comes in handy for orbital dynamics

calculations.

• Community: There is a large community of C++ developers, so it is easy to find

help and resources.

6.1 Principles

Several fundamental concepts were evaluated before starting the development, and

most important themes to follow were decided as follows.
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• Keep it simple, stupid (KISS): Try to keep the design as simple as possible, while

still meeting the requirements of the software. McConnell states that managing

complexity is the most critical technical matter in software development [63], as

complex designs can be more difficult to understand and maintain.

• Modularity (Divide and Conquer): Divide the software into distinct components or

modules, each with a specific responsibility. This can make it easier to understand

and modify the software. Each type of resource has a specific set of interfaces

that are implemented through base classes in C++. New components within each

category are created by implementing classes that are derived from these base

classes and defining the necessary methods to provide the desired functionality.

• Open/closed principle: The software should be designed to allow for extension

without requiring modification. This means that new features can be added without

altering existing code.

• Don’t repeat yourself (DRY): Avoid duplicating code or logic in the software.

Instead, try to find a way to reuse existing code or abstract common concepts into a

shared component.

In the subject of writing code for astrodynamics, the following recommendations

by Vallado were practiced as best as possible in order to avoid errors and achieve

maintainability [5].

• Number, order, type: In a function, the number and order of the formal parameters

(arguments passed between the function and its caller) must be consistent and must

match the expected data types (e.g., Vector3, Vector3, Number) every time the

function is called.

• Documentation: While documentation can take time and effort, it is often neglected

when budgets or time are limited. However, failing to document the work can make

it difficult for the programmer or others to reuse or modify the in the future.

• Variable names: Traditionally, variable names were kept to 6-8 characters in length,

but it is usually counterproductive to use excessively long names either. Instead, use
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common sense and aim for variable names that are similar to mathematical notation

(e.g., CD for drag coefficient, BC for ballistic coefficient). Using descriptive and

concise names can help make your code more readable and easier to understand. In

short, the name of a variable, class, or function, should explain why it exists, what

it does, and how it’s used [64].

• Modularity: It is important to maintain the integrity of algorithms, even if doing

so results in larger code size. When this is necessary, it is important to use

documentation effectively to help make the code easier to understand and maintain.

• Testing: Code that has not been tested is inherently unreliable, so it is important to

test and validate any code that you write. While there may be constraints on testing,

it is important to at least try to do the following:

– Test each occurrence of a dynamic event. For example, use different types

of orbits (circular, elliptical, parabolic, and hyperbolic) to test a code that

propagates orbits.

– Test each computational method. Exercise each loop in the code, and fully

execute the code itself.

– Develop new test cases to cover emerging situations.

6.2 Architecture

Several different modules were created within both the front-end and back-end of

the software, and while the modules are mostly available for independent use, some

interactions between different modules were inevitable. For example, both the

Coordinate System and Orbit Propagator modules use the same global values such

as planetary information, so they require the Celestial Objects module, albeit at an

abstract level.

The software architecture consists of several components that are organized into

functional modules, or packages, and work together to simulate spacecraft missions.

There are three main packages in the system: User Interface, the Orbit Engine, and

Utilities. Each of these packages is further divided into smaller units, known as

97



subpackages, which provide more detailed views of the functions within each package.

These different packages and subpackages interact with each other to model spacecraft

in orbit and simulate the spacecraft’s environment. Figure 6.1 provides an overview of

this package grouping and subpackaging.

Figure 6.1 : Software Modules

6.2.1 User Interface

All 2-way communications between users and the software are contained in this

package.

• GUI: Users interact with the software through a user interface. The GUI is coded

like a website using HTML, CSS, and Javascript with the addition of Cesium.js

module for the 3D visualization of space environment. The GUI provides an easy to

use yet rich environment and is connected to the back-end in two ways. In the online

version that is due to be hosted on a server, the back-end is accessed via REST API

calls. In the installed version, the back-end part consisting of C++ modules are

integrated into the software with a software library called “napi”. The “node-gyp”

package uses python to create a node modules from the native C++ code and the

APIs can directly be called.

• Plots & Reports: This component handles preparing reports and graphics from the

generated data, and formatting them according to the user’s preferences. Different
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units and timesteps can be chosen, and one report can include any number of

outputs. The "plotly" Javascript library is used for plotting.

• Electron Helpers: This one exists for the installed version. Electron is a tool for

creating desktop applications from web sites. This module handles Electron related

properties such as window creations and attaching event handlers, such as context

and application menus.

• Cesium: This package is for interfacing with the Cesium module. It is split into

three parts, consisting of a controller, entities, and timeline. The Controller handles

creating the Cesium viewer when a new 3D or 2D window is instantiated, and keeps

track of the scene and entities.

An Entity is a Cesium object that has a visual description in the scene. It can

be a Satellite, a Ground Station, a Location, or a Sensor on a spacecraft. The

Controller keeps track of these entities and updates their position and orientation

at each timestep.

Timeline tools is for managing the scenario time. User can adjust the UI timeline

tool freely back and forth in the limits set during the initialization of the scenario,

and this module keeps track of the current time, whether animation should happen,

and in what speed.

6.2.2 Orbit Engine

This is the back-end part that handles all the astrodynamics computations. The

components that are used to model the elements of the flight simulation are contained

in this package. It can be broken up to 3 submodules.

• Globals: This subpackage includes all of the environmental data and tools needed

to model the solar system. These include the Earth Orientation Parameters, space

weather data, and planetary constants.

• Resources: These are the entities that also exist in the UI, such as spacecraft and

ground station classes.
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• Models: These are the physics computations that contain the force models, and

orbit propagation.

6.2.3 Utilities

This package contains classes used to achieve functionality of other functions, and can

be thought as the backbone of all computational modules.

• Matrix Algebra: Uses the Eigen C++ library to provide matrix calculus

functionality.

• Time: This library performs conversions between various time systems, from UT1

to GPS Time as described in the Time Systems chapter. The IERS bulletin data is

included here.

• Maths: All of the generic mathematical algorithms and solvers are programmed

here. These include the numerical integration algorithms such as Runge-Kutta,

interpolation algortihms (Lagranga etc), sorting and selection algorithms for big

arrays, as well as other useful low level computations.

100



6.3 User Interface

The UI was designed in such a way that it is robust but easy to use for inexperienced

users, has a clear and intuitive layout, with well-labeled buttons and easily discoverable

features. The main window is organized in a way that makes it easy for users to find

and access the various components, such as the asset library and object view.

There is a sidebar on the left for adding assets, two windows for the 3D and 2D views,

and an object browser to navigate the available entities in the scenario, with options for

selecting, renaming, and deleting them.. The asset library is organized into categories,

such as satellite, ground station, and communication link.

Components can be selected by clicking or edited by double-clicking the tree view.

A component can be zoomed in, in which case the camera automatically moves to

an appropriate viewing distance and is centered on the satellite. This changes camera

view from inertial to satellite-based, so the orbit itself appears to be moving.

The 3D and 2D windows are detachable, allowing users to move them around or even

display them on separate monitors if desired.

Overall, the goal of the UI design was to provide users with all the tools and

information they need to create their desired content, while also being intuitive and

easy to navigate.
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Figure 6.2 : Final UI Design

6.3.1 Ground Tracks

A ground track can be described as the projection of the orbit plane of a satellite onto

the surface of the Earth. An important feature of satellite ground tracks is that the

orbital inclination (i) can be deduced by one look, as the maximum and minimum

geographical latitudes of the track are equal to i and −i, respectively. This osculation

in latitudes cause the shape of the ground track in low earth orbits to resemble a sine

curve on a Mercator projection.

The associated geographical latitude and longitude of the point where the line

connecting the center of the planet to the spacecraft passes through the surface can

be used to track the satellite. The latitude is equal to the declination, δ , and the

longitude is defined as the angle between this point and the Greenwich meridian,

counted positively from the east. The right ascension of the Greenwich meridian is

known as the Greenwich Hour Angle and can be found from

Θ(t) = 280.4606◦+360.9856472◦ḋ (6.1)
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Where d is the time since the J2000 epoch, measured in days. Θ increases by 360◦

per revolution, which is equal to a sidereal day (23h56m04s). Hence, Greenwich Hour

Angle is equivalent to sidereal time.

Figure 6.3 : Ground projection of an orbit [13].

Figure 6.4 : Sample Ground Tracks.

Since the Earth rotates, the ground track shifts westwards in each revolution.

Observing the ground tracks, one can also discern the orbital period in addition to

the inclination. The distance between two successive equator crossings, in terms of

latitude, gives the period when divided by the angular speed of the Earth. This can be

observed in Figure 6.5, where the distance of 23.72◦ divided by 15.04◦/h equals 1.577

hours.
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Figure 6.5 : Ground track of two subsequent revolutions of a satellite

Different kinds of orbits can result in various ground track shapes. Figure 6.6 show

geostationary and Molniya orbits, respectively. Details about these kinds of orbits are

given in Chapter 5.1.
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Figure 6.6 : Geostationary and Molniya Orbit Ground Tracks
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Algorithm 14 describes the steps to plot the ground track of a satellite using its position

vector r⃗ = xî+ y ĵ+ zk̂.
Algorithm 14: Ground Track Algorithm [12]

1 Compute the rates of change of right ascension and argument of perigee due to
oblateness. The second zonal harmonic (J2) for Earth is 1.08263e−3.

Ω̇ =

[
3
2

√
µJ2R2

E

(1− e2)2a7/2

]
cos i

ω̇ =

[
3
2

√
µJ2R2

E

(1− e2)2a7/2

](
5
2

sin2 i−2

)
2 Calculate the time since perigee passage from mean anomaly using the

equation in 2.3.

t0 =
M
2π

T

3 Calculate the right ascension (α) and declination (δ ) at each step.

for t = t0; t < tend; t += ∆t do

M =
2π

T
t

E − esinE = M {Solve Kepler’s equation to get E}

θ = 2tan−1 (

√
1+ e
1− e

tan
E
2
)

Ω = Ω0 + Ω̇∆t
ω = ω0 + ω̇∆t
φ = ωE(t − t0)
{r’}= [Rz(φ)]{ r}
l = x/|⃗r| m = y/|⃗r| n = z/|⃗r|
δ = sin−1 n {Declination is equal to the geographical
latitude}

α =

{
cos−1 (l/cosδ ) (m > 0)
2π − cos−1 (l/cosδ ) (m ≤ 0)

λ = α −Θ(t) {Convert right ascension to geographical
longitude}

end for
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7. SOFTWARE VERIFICATION

The final software was subjected to a series of tests to ensure its reliability and

accuracy. One of the key principles used in the software design was modularity, which

involves breaking down complex systems into smaller, more manageable components.

This made it easier to identify and fix bugs because each component could be tested

independently, rather than having to test the entire system at once. Moreover, the

software also used object-oriented programming principles, which allow for the reuse

of code and the creation of more efficient and scalable system. The use of these

software principles not only made it easier to identify and fix bugs, but it also made

the testing process much faster. By decomposing the system into smaller elements and

using reusable code, the testing process was streamlined, allowing for more efficient

and effective debugging.

To validate the accuracy of the software, data from various satellites was obtained

and compared to the results simulated by the software. The pass predictions of

the software were then tested by listening to several satellites from the ITU Ground

Station. The SharjahSat-1 CubeSat was used to validate the software’s ability to

analyze communication links. In addition to the software being tested, the same

simulations were also run using the GMAT R2020 satellite simulator, which is the

current industry standard and the latest version available. The comparisons were

conducted using both LEO and GEO satellites.

7.1 Tests using Satellite data

The aim of this test was to compare the results obtained from the software simulation to

real data, in order to asses the accuracy levels of the outputs. Two different cases were

considered, one with numerical propagation that includes all force models except by

thrust, so satellites without propulsion systems were chosen for analysis, and one with

the improvement on the data with the developed deep-learning based model. Around
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50 different satellites were considered for this test. Comparison data was created using

TLEs and SGP4 model. The TLEs were updated approximately once every 6 hours

to generate data, so the obtained state vectors reflect reality as much as possible. The

approximate RSS for 50 test cases for different types of orbit are given in Table 7.1.

Table 7.1 : Test Results.

Max Position Diff. RSS (m)
Orbit Type Numerical Propagation DL Model
LEO (ISS) 2.112E-00 3.232E-01
LEO (ITUpSat-1) 6.853E+00 1.523E-03
LEO (SSO) 1.577E+00 9.454E-03
GEO 5.653E-02 2.896E-02

Figure 7.1 also show the results for one test case using ITUpSat-1 satellite.

Figure 7.1 : Results for ITUpSat-1

7.1.1 Comparison with other software

The approach for testing the orbital dynamics model in the software involved

comparing the results of numerical propagation to those obtained using GMAT and

other available software. The tests covered both LEO and GEO regimes and included

a variety of force models such as gravity potential, n-body attractions, drag, SRP, solid

Earth tides, and relativity. The tests involved individually evaluating each dynamics

model for selected orbit test cases, as well as testing the combined effects of all

applicable models for other selected orbit test cases. Table 7.2 shows the initial state

vectors in ICRF axis system for the chosen orbit types. The integrator used for these
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tests was RKV89. Fixed values for SRP and drag were used for the tests. Table 7.3

provides the initial epochs, and duration and time step of simulations for the chosen

test cases.

Table 7.2 : Comparison Test Initial State Vectors.

Position (km) Velocity (km/s)
Orbit Type X Y Z Vx Vy Vz
LEO (ISS) -82.6557 -5269.6561 4277.8336 6.0679 -3.01277 -3.588
LEO
(ITUpSat-1)

3276.6883 1364.7791 -6133.4832 -4.873 -4.4179 -3.5915

LEO
(SSO)

-2641.47 -6350.7 0 -0.906071 0.376865 7.5491

GEO -24134.9 34576 0 -2.52114 -1.75981 0

Table 7.3 : Comparison Test Epochs and Durations.

Orbit Type TOF (days) Initial Epoch Output Step (sec)
LEO (ISS) 1 21 Dec 2022 09:00:00.000 60
LEO (ITUpSat-1) 1 21 Dec 2022 09:00:00.000 60
LEO (SSO) 1 21 Dec 2022 09:00:00.000 60
GEO 7 21 Dec 2022 09:00:00.000 600

Table 7.4 shows data that compares the results of different orbit propagation tests. The

data shows the maximum difference in position, measured in meters, between the test

data and the actual results over the test duration. The velocity differences between the

test results were also analyzed and were consistently much lower than the differences

in position. The comparison of the most test results using the RSS method showed

good agreement, with differences typically at the submeter level.

Table 7.4 : Comparison Results.

Max Position Diff. RSS (m)
Orbit Type Orbiter GMAT Other
LEO (ISS) 7.666E-01 1.654E+00 8.844E-01
LEO (ITUpSat-1) 2.565E-03 1.167E+00 6.656E-01
LEO (SSO) 3.122E-02 9.875E-01 1.421E+00
GEO 3.221E-02 6.335E-04 8.177E-04

Since most of the data used to train the models come from LEO satellites, they have

better results than GEO.
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7.1.2 Experimental Results

In order to verify the software results with experimentation, two tests were performed.

First, 10 consecutive passes of ITUpSat-1 were predicted using the software. Then,

using the ground station in ITU Faculty of Aeronautics and Astronautics (Figure 7.3),

the satellite ITUpSat-1 was tracked and listened during the predicted times.

It was shown that the pass predictions were correct as the satellite was transmitting

beacon signals during the computed time intervals, as shown in Figure 7.2.

Figure 7.2 : ITUpSat-1 Beacon Signals
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Figure 7.3 : ITU Ground Station Schematic

The actual pass (found from SGP4 using a very recent TLE) versus the pass predicted

by the software is shown in Figure 7.4 as well.

Figure 7.4 : Real Pass (left) and Predicted Pass (right)

The second test was verification of the link budget analysis. Sharjahsat-1 was used

for this purpose. The communication system parameters were given as input to the

software link budget calculator, as shown in Chapter 5.2.3, and the received signal

power is found to be consistent with calculations, with an average accuracy of 98.65%.

The signal received from the satellite is shown in figure 7.5.
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Figure 7.5 : Received Signals from Sharjahsat-1

7.2 UI Verification

This process involves testing the UI to ensure that it is intuitive and provides the

necessary information and functionality to the user. Verification points included testing

the layout and organization of the UI, checking for errors and inconsistencies, and

ensuring that the UI is visually appealing and easy to navigate. Both developers and

users were involved in the UI verification process to ensure that the software meets

the needs of the intended audience. The user interface of the software was intuitive

and easy for undergraduate students to navigate, as they were able to easily find what

they were looking for. When the chapters of the thesis were shared with the users,

the feedback indicated that it was effective in improving their understanding of space

mission design and operations. Based on this feedback, the material will be refined

and compiled into an educational glossary to be incorporated into the software. This

glossary will serve as a reference for both software usage and for clarifying concepts

related to mission planning for operators.
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8. CONCLUSIONS

Spacecraft mission planning is an intricate process that depends on a variety of models

which try to capture the complex governing forces in the harsh environment of space

to solve the equation of motion. Astrodynamics calculations serve as only the starting

point from which the critical parameters of the mission can be derived from, such

as determination of ground station passes to find contact durations and eclipses to

compute power system requirements.

The work performed in this thesis provides a computer platform for everybody

interested in spacecraft mission operations. The software can be used at a basic level

for educational purposes by simply visualizing orbits of different characteristics and

showing how different assumptions during orbit propagation lead to different motions.

Students can engage with the software to expand their understanding of astrodynamics,

understanding which forces are in play and what factors are considered during mission

planning phase. Organizations can use it on a deeper level and plan for real missions. It

is intended that this work will aid in the future CubeSat missions developed in SSDTL

as well as in other universities and space organizations.

The AI orbit propagator model developed within this thesis allows the myriad legacy

spacecraft data to be used to increase the accuracy of the numerical models, a feature

not available in any other kind of a software. As more and more missions are performed

and more data is fed into the software, the accuracy is expected to increase even higher.

The software developed has an intuitive, easy to use interface that allows starters to

begin experimenting without spending too much effort. The back-end is designed to

be maintainable and easy to extend, as many more updates such as spacecraft sensor

calculations are planned in the future. The thesis also explains the mathematical

background and step-by-step process for performing the numerical integrations of the

force models acting on spacecraft. These are the current default implementations used

by the software.
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Comparison with real data shows that the generated ephemerides align with real

ephemerides with an accuracy of approximately 5% for LEO satellites. In this accuracy

regime the results are on par with the commercial mission design software STK as well

as the open-source GMAT software developed by NASA.

Finally, it must be emphasized that the release of the Orbiter software is not the end

of this project, but a beginning. There are still numerous enhancements to be made to

answer to the ever-growing requirements of the industry, such as an engine for orbital

determination and for interplanetary missions.

8.1 Future Work

The software was designed to be able to be extended for various features related to

space flight and satellite operations in the future. Some of these features include:

Other central bodies. Following the open/closed principle, all of the planetary values,

such as gravitational parameter and radius, were not hard-coded to be of Earth’s but

taken from an object of the CelestialBody class. This will allow easily integrating other

celestial bodies for faciliating and propagating orbits.

Hohmann and Bielliptic Transfers. The inclusion of common orbital transfer

maneuvers, such as Hohmann transfers, to make it easier for users to execute these

maneuvers.

Interplanetary trajectories. After the addition of different Celestial bodies such as

the Moon, the next step for orbital maneuvers is to extend the capability to design

interplanetary trajectories, using techniques such as patched conic approximation.

Rendezvous and Phasing. These will also be integrated into orbital maneuvers as

most of the missions require these type of maneuvers that are critical for the mission.

Since the software can propagate multiple orbits simultaneously at ease, it will not be

difficult to perform the required calculations.

Attitude Models. There is currently no way to define or change the attitude behavior

of the satellite in the software, which is required for complex orbital propagation.

Different attitude laws will be added which the user can select from, such as

Nadir-pointing, Point-tracking, fixed, etc.
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Satellite sensors and instruments. There are various instruments used on satellites

that can be analyzed such as cameras and radar systems. The software can be extended

to perform complex calculations such as simulating the view of a camera system whose

properties are defined.

Launch vehicles. Rocket dynamics can be incorporated into the simulator to perform a

mission from start to finish. The user can find out if their rocket can carry the payload

to the required orbit, and how much fuel is required on board etc. Additionally, the

capability to analyze launch windows is a great necessity.

Aerial vehicles. Planes, UAVs, helicopters can all be included in the simulator by

adding the appropriate flight dynamics algorithms. Communications between multiple

vehicles etc. can be simulated.

Importing database files. There are different formats of satellite definitions and many

databases online. It will be helpful to integrate different databases such as satellites,

star catalogues, etc.
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APPENDIX B : Part of Codebase
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Figure B.1 : Screenshot from Codebase.

Figure B.2 : File Hierarchy Trees.
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